数据周期 蓝桥杯

复杂现象背后的推动力,可能是极其简单的原理。科学的目标之一就是发现纷繁复杂的自然现象背后的简单法则。爱因斯坦的相对论是这方面的典范例证。
很早的时候,生物学家观察某区域某种昆虫的数量(称为虫口数)之逐年变化规律,就十分迷惑:有的时候是逐渐增多达到一个平衡值。
有的时候在两个数字间周期跳动。有的时候则进入一片混乱,类似随机数字一样变化(称为混沌现象)。
慢慢地,人们从数学中更清晰地观察到了这一现象,并因此开创了:符号动力学、非线性动力学等研究领域。
一个著名的虫口数目简化模型如下:
x' = x * (1 - x) * r
这里,x  x' r 都是浮点数。
其中,x 表示当年的虫口数,x' 表示下一年的虫口数。它们的取值范围在 0 与 1 之间,实际上表示的是:虫口的总数占环境所能支持的最大数量的比率。
r 是常数(环境参数),r的取值范围在 [0,4]。
令人惊讶的是:这个简单的迭代公式有着不同寻常的神秘性质!
一般来说,多次迭代后,虫口数的稳定模式与x的初始值无关,而与 r 有关!
例如:无论x初始值是多少,当 r = 2.5 的时候,x 多次迭代后会趋向于 0.6。
而当 r = 3.2 的时候,x 的值会趋向于在 0.799 与 0.513 之间周期性摆动。
那么,r = 3.62 的时候,你观察
到有什么周期现象发生吗?
#include<iostream>
using namespace std;
double x1,x,r;  
int main(){
	cin>>r;
	x=0.5;			//因为 “一般来说,多次迭代后,虫口数的稳定模式与x的初始值无关,而与 r 有关!” 而 取值范围在 0 与 1 之间,所以设x=0.5初始即可 
	for(int i=0;i<100;i++){
		x1=(1-x)*x*r;
		x=x1;
		cout<<x<<endl;
	}
}   


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值