《信号与系统》 第一章 信号与系统概述

1.连续时间信号与离散时间信号

1.1举例与数学表示

1.1.1 连续时间信号

  • 声音、光线、温度等变化连续的信号。

  • 数学表示: x ( t ) x(t) x(t),其中 t t t 为时间。

1.1.2 离散时间信号

  • 数字信号、采样信号等。

  • 数学表示: x [ n ] x[n] x[n],其中 n n n 为整数序列。

1.2 信号能量与功率

1.2.1 连续时间信号的能量和功率

对于连续时间信号 x ( t ) x(t) x(t),它的能量和功率分别定义为:

  • 能量: E x = ∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt Ex=x(t)2dt
  • 功率: P x = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 ∣ x ( t ) ∣ 2 d t P_x = \lim_{T\to\infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt Px=limTT1T/2T/2x(t)2dt

其中 ∣ x ( t ) ∣ 2 |x(t)|^2 x(t)2 表示信号在每个时刻的幅值的平方,可以理解为信号的强度。能量表示信号在所有时刻上强度的总和,而功率则表示信号在平均意义下的强度。

1.2.2 离散时间信号的能量和功率

对于离散时间信号 x [ n ] x[n] x[n],它的能量和功率分别定义为:

  • 能量: E x = ∑ n = − ∞ ∞ ∣ x [ n ] ∣ 2 E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 Ex=n=x[n]2
  • 功率: P x = lim ⁡ N → ∞ 1 N + 1 ∑ n = 0 N ∣ x [ n ] ∣ 2 P_x = \lim_{N\to\infty} \frac{1}{N+1}\sum_{n=0}^{N}|x[n]|^2 Px=limNN+11n=0Nx[n]2

其中 ∣ x [ n ] ∣ 2 |x[n]|^2 x[n]2 表示信号在每个时刻上幅值的平方。与连续时间信号类似,离散时间信号的能量表示所有时刻上幅值平方之和,而功率表示在平均意义下幅值平方之和。

1.3 采样与重构

1.3.1 采样

采样指将连续时间信号转化为离散时间序列。这个过程可以用一个周期函数来描述:

y ( t ) = x ( t ) ⋅ p ( t ) y(t) = x(t) \cdot p(t) y(t)=x(t)p(t)

其中 p ( t ) p(t) p(t) 是一个周期为 T s T_s Ts 的函数,称为采样

2.自变量的变换

2.1 自变量的变换举例

2.1.1 时间延迟

时间延迟指将信号在时间轴上向右移动或向左移动。其数学表示为:

x ( t − τ ) x(t - \tau) x(tτ)

其中 τ \tau τ 表示时间延迟的量。当 τ > 0 \tau > 0 τ>0 时,信号向右移动;当 τ < 0 \tau < 0 τ<0 时,信号向左移动。

2.1.2 时间压缩和时间扩展

时间压缩指将信号在时间轴上沿着原点进行收缩,使得原来的一段时间在新的时间轴上变得更短。其数学表示为:

x ( a t ) x(at) x(at)

其中 a > 1 a > 1 a>1 表示收缩的程度, a < 1 a < 1 a<1 表示扩展的程度。

2.1.3 频率移位

频率移位指将信号在频率域上向左或向右平移。其数学表示为:

x ( t ) e j ω 0 t x(t)e^{j\omega_0 t} x(t)ejω0t

其中 ω 0 \omega_0 ω0 表示频率偏移的量。当 ω 0 > 0 \omega_0 > 0 ω0>0 时,信号在频率域上向右平移;当 ω 0 < 0 \omega_0 < 0 ω0<0 时,信号在频率域上向左平移。

2.2 自变量变换的作用

自变量变换可以改变信号的特性和表达方式,例如:

  • 时间延迟可以改变信号的起始位置和响应时间;
  • 时间压缩和扩展可以改变信号的持续时间和周期性;
  • 频率移位可以改变信号中某些部分所占比例和谐波成分。

这些变换可以通过控制参数实现对信号特性的调节和优化。

2.3 周期信号

周期信号是指在时间轴上具有重复性的信号,即以某一固定时间间隔重复出现。周期信号的周期 T T T 定义为最小正周期,即满足 x ( t + T ) = x ( t ) x(t+T) = x(t) x(t+T)=x(t) 的最小正数 T T T

周期信号可以表示为:

x ( t ) = x ( t + n T ) x(t) = x(t + nT) x(t)=x(t+nT)

其中 n n n 为整数,表示信号经过 n n n 个周期后与原来的信号完全相同。

对于连续时间周期信号 x ( t ) x(t) x(t),其频率称为基频,定义为:

f 0 = 1 T f_0 = \frac{1}{T} f0=T1

对于离散时间周期信号 x [ n ] x[n] x[n],其频率称为基频率,定义为:

ω 0 = 2 π N \omega_0 = \frac{2\pi}{N} ω0=N2π

其中 N N N 为一个完整的周期内的样本数。

周期信号在数字信号处理中有广泛应用,例如音频处理、图像压缩等。

2.4 偶信号和奇信号

偶信号和奇信号是两种特殊的信号形式,它们的定义如下:

2.4.1 偶信号

若对于连续时间信号 x ( t ) x(t) x(t) 或离散时间信号 x [ n ] x[n] x[n],满足:

x ( − t ) = x ( t ) 或 x [ − n ] = x [ n ] x(-t) = x(t) \quad \text{或} \quad x[-n] = x[n] x(t)=x(t)x[n]=x[n]

则称该信号为偶信号。

偶函数的图像通常具有轴对称性,例如余弦函数就是一个偶函数。

2.4.2 奇信号

若对于连续时间信号 x ( t ) x(t) x(t) 或离散时间信号 x [ n ] x[n] x[n],满足:

x ( − t ) = − x ( t ) 或 x [ − n ] = − x [ n ] x(-t) = -x(t) \quad \text{或} \quad x[-n] = -x[n] x(t)=x(t)x[n]=x[n]

则称该信号为奇信号。

奇函数的图像通常具有中心对称性,例如正弦函数就是一个奇函数。

3.指数信号与正弦信号

3.1 连续时间复指数信号与正弦信号

3.1.1 复指数信号

复指数信号是指形如 x ( t ) = A e j ω t x(t) = Ae^{j\omega t} x(t)=Aet 的连续时间信号,其中 A A A 为振幅, ω \omega ω 为角频率。其实部和虚部分别为:

ℜ [ x ( t ) ] = A cos ⁡ ( ω t ) 和 ℑ [ x ( t ) ] = A sin ⁡ ( ω t ) \Re[x(t)] = A\cos(\omega t) \quad \text{和} \quad \Im[x(t)] = A\sin(\omega t) [x(t)]=Acos(ωt)[x(t)]=Asin(ωt)

复指数信号在通信、控制等领域中有广泛应用。

3.1.2 周期复指数与正弦信号

周期复指数信号形式为:

x ( t ) = ∑ n = − ∞ ∞ c n e j n ω 0 t x(t) = \sum_{n=-\infty}^{\infty} c_ne^{jn\omega_0t} x(t)=n=cnejnω0t

其中 ω 0 = 2 π T \omega_0 = \frac{2\pi}{T} ω0=T2π T T T 为信号的周期, c n c_n cn 为系数。

如果 c n c_n cn 是实数,则 x ( t ) x(t) x(t) 是实信号;如果 c n c_n cn 是复数,则 x ( t ) x(t) x(t) 是复信号。

c n = ∣ c n ∣ e j θ n c_n = |c_n|e^{j\theta_n} cn=cnejθn 时,可以将周期复指数信号表示为:

x ( t ) = ∑ n = − ∞ ∞ ∣ c n ∣ e j ( ω 0 t + θ n ) x(t) = \sum_{n=-\infty}^{\infty} |c_n|e^{j(\omega_0t+\theta_n)} x(t)=n=cnej(ω0t+θn)

周期复指数信号可以分解为正弦和余弦信号的线性组合。例如,

x ( t ) = A cos ⁡ ( ω 0 t + ϕ ) + j B sin ⁡ ( ω 0 t + ϕ ) x(t) = A\cos(\omega_0t+\phi) + jB\sin(\omega_0t+\phi) x(t)=Acos(ω0t+ϕ)+jBsin(ω0t+ϕ)

其中, A = ∣ c 1 ∣ + ∣ c − 1 ∣ , B = j ( ∣ c 1 ∣ − ∣ c − 1 ∣ ) , ϕ = arg ⁡ ( c 1 ) − arg ⁡ ( c − 1 ) A=|c_1|+|c_{-1}|, B=j(|c_1|-|c_{-1}|), \phi=\arg(c_1)-\arg(c_{-1}) A=c1+c1,B=j(c1c1),ϕ=arg(c1)arg(c1)

这说明,任何周期复指数信号都可以表示成正弦和余弦函数的线性组合。

因此,在频域中,一个周期复指数信号可以看作是一系列离散的频率分量,每个频率分量对应一个正弦或余弦波。这些频率分量称为谐波。

例如,一个周期为 T T T 的正弦波可以表示为:

x ( t ) = A cos ⁡ ( 2 π f t + ϕ ) x(t) = A\cos(2\pi f t + \phi) x(t)=Acos(2πft+ϕ)

其中, f = 1 T f=\frac{1}{T} f=T1 是信号的基频率,也是谐波的基频率。

3.1.3 一般复指数信号

一般复指数信号形式为:

x ( t ) = A e j ( ω t + ϕ ) x(t) = Ae^{j(\omega t + \phi)} x(t)=Aej(ωt+ϕ)

其中 A A A 为振幅, ω \omega ω 为角频率, ϕ \phi ϕ 为相位。与周期复指数信号不同的是,一般复指数信号没有固定的周期。

3.2 离散时间复指数信号与正弦信号

3.2.1 实指数信号

离散时间实指数信号可以表示为: x [ n ] = A α n x[n] = A \alpha^n x[n]=Aαn,其中 A A A α \alpha α 是实数, α \alpha α 为正实数。这个信号的幅度随着时间增加呈指数增长或衰减。

∣ α ∣ < 1 |\alpha| < 1 α<1 时,信号是衰减的;当 ∣ α ∣ > 1 |\alpha| > 1 α>1 时,信号是增长的。

3.2.2 复指数信号

离散时间复指数信号是指形如 x [ n ] = A e j ω n x[n] = Ae^{j\omega n} x[n]=Aejωn 的离散时间信号,其中 A A A 为振幅, ω \omega ω 为角频率。其实部和虚部分别为:

ℜ [ x [ n ] ] = A cos ⁡ ( ω n ) 和 ℑ [ x [ n ] ] = A sin ⁡ ( ω n ) \Re[x[n]] = A\cos(\omega n) \quad \text{和} \quad \Im[x[n]] = A\sin(\omega n) [x[n]]=Acos(ωn)[x[n]]=Asin(ωn)

3.2.3 周期复指数与正弦信号

周期离散时间复指数信号形式为:

x [ n ] = ∑ k = − ∞ ∞ c k e j k ω 0 n x[n] = \sum_{k=-\infty}^{\infty} c_ke^{jk\omega_0n} x[n]=k=ckejkω0n

其中 ω 0 = 2 π N \omega_0 = \frac{2\pi}{N} ω0=N2π N N N 为信号的周期, c k c_k ck 为系数。

如果 c k c_k ck 是实数,则 x [ n ] x[n] x[n] 是实信号;如果 c k c_k ck 是复数,则 x [ n ] x[n] x[n] 是复信号。

c k = ∣ c k ∣ e j θ k c_k = |c_k|e^{j\theta_k} ck=ckejθk 时,可以将周期离散时间复指数表示为:

x [ n ] = ∑ k = − ∞ ∞ ∣ c k ∣ e j ( ω 0 n + θ k ) x[n] = \sum_{k=-\infty}^{\infty} |c_k|e^{j(\omega_0n+\theta_k)} x[n]=k=ckej(ω0n+θk)

周期离散时间复指数可以分解成正弦和余弦函数的线性组合。例如,

x [ n ] = A cos ⁡ ( ω 0 n + ϕ ) + j B sin ⁡ ( ω 0 n + ϕ ) x[n] = A\cos(\omega_0n+\phi) + jB\sin(\omega_0n+\phi) x[n]=Acos(ω0n+ϕ)+jBsin(ω0n+ϕ)

其中, A = ∣ c 1 ∣ + ∣ c − 1 ∣ , B = j ( ∣ c 1 ∣ − ∣ c − 1 ∣ ) , ϕ = arg ⁡ ( c 1 ) − arg ⁡ ( c − 1 ) A=|c_1|+|c_{-1}|, B=j(|c_1|-|c_{-1}|), \phi=\arg(c_1)-\arg(c_{-1}) A=c1+c1,B=j(c1c1),ϕ=arg(c1)arg(c1)

3.2.4 离散复指数序列的周期性质

离散复指数序列 { e j ω n } \{e^{j\omega n}\} {ejωn} 的周期性质如下:

ω \omega ω 为有理数,则存在正整数 N N N,使得 ∀ n ∈ Z \forall n\in\mathbb{Z} nZ,都有
e j ω ( n + N ) = e j ω n e^{j\omega (n+N)} = e^{j\omega n} e(n+N)=ejωn

ω \omega ω 为无理数,则 { e j ω n } \{e^{j\omega n}\} {ejωn} 不具有周期性。

3.3 指数函数与正弦函数的区别与联系

指数函数和正弦函数都是常见的基本函数,在某些情况下可相互转化。一般来说:

  • 指数函数在连续时间领域中具有稳定性;
  • 正弦函数在连续时间领域中具有周期性;
  • 在频域中,任何连续时间周期信号都可以表示成一系列正弦波的线性组合;
  • 在数字领域中,任何离散时间周期信号都可以表示成一系列基本频率的正弦波和余弦波的线性组合。

因此,在许多应用中需要将连续时间域中的稳定性转化到离散时间域上,并将频率分量通过傅里叶变换进行分析和处理。

4.单位冲激函数与阶跃函数

4.1 离散时间脉冲序列与阶跃序列

在离散时间信号处理中,经常会遇到两种基本的序列:单位冲激序列和单位阶跃序列。

4.1.1 离散时间单位冲激序列

离散时间单位冲激序列 δ [ n ] \delta[n] δ[n] 定义如下:

δ [ n ] = { 1 n = 0 0 n ≠ 0 \delta[n]=\left\{ \begin{aligned} &1 && n=0\\ &0 && n\neq 0 \end{aligned} \right. δ[n]={10n=0n=0

其中, δ [ n ] \delta[n] δ[n] n = 0 n=0 n=0 时取值为 1 1 1,在其他时刻都取值为 0 0 0。表示在 n = 0 n=0 n=0 时,信号发生一个瞬间的脉冲响应。

4.1.2 离散时间单位阶跃序列

离散时间单位阶跃序列 u [ n ] u[n] u[n] 定义如下:

u [ n ] = { 1 n ≥ 0 0 n < 0 u[n]=\left\{ \begin{aligned} &1 && n \geq 0\\ &0 && n<0 \end{aligned} \right. u[n]={10n0n<0

其中, u [ n ] u[n] u[n] n ≥ 0 n \geq 0 n0 的时候取值为 1 1 1,在 n < 0 n<0 n<0 的时候取值为 0 0 0。表示从初始时刻起一直存在的信号响应。

4.2 连续时间脉冲函数与阶跃函数

4.2.1 连续时间单位冲激函数(Dirac Delta 函数)

连续时间单位冲激函数 δ ( t ) \delta(t) δ(t) 是一个广义函数(generalized function),定义如下:

f ( t ) ∗ δ ( t ) = ∫ − ∞ ∞ f ( τ ) δ ( t − τ ) d τ = f ( t ) f(t)* \delta(t) = \int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d \tau = f(t) f(t)δ(t)=f(τ)δ(tτ)dτ=f(t)

其中,符号 * 表示卷积运算。可以看出, δ ( t ) \delta(t) δ(t) 对于任意的 t ≠ 0 t \neq 0 t=0 都等于 0 0 0,而在 t = 0 t=0 t=0 的位置上是一个无穷大的脉冲。

4.2.2 连续时间单位阶跃函数(Heaviside Step 函数)

连续时间单位阶跃函数 u ( t ) u(t) u(t) 定义如下:

u ( t ) = { 1 t > 0 1 / 2 t = 0 0 t < 0 u(t)=\left\{ \begin{aligned} &1 && t> 0\\ &1/2 && t=0\\ &0 && t< 0 \end{aligned} \right. u(t)= 11/20t>0t=0t<0

可以看出,在 t > 0 t> 0 t>0 的区间内, u ( t ) u(t) u(t) 取值为 1 1 1;在 t < 0 t< 0 t<0 的区间内,它取值为 0 0 0;而在 t = 0 t=0 t=0处它取值为 1 2 \frac{1}{2} 21。表示从初始时刻起一直存在的信号响应。

5.连续时间系统和离散时间系统

5.1简单系统举例

在信号与系统中,简单系统通常指输入和输出之间的关系可以用一个数学方程表示的系统。这些系统可以分为两类:连续时间系统和离散时间系统。

以下是一些常见的简单系统示例:

5.1.1 连续时间系统

低通滤波器

低通滤波器是一个连续时间系统,其作用是通过滤除高频部分使得输入信号变得更加平滑。它可以用一个差分方程来描述:

y ( t ) = 1 R C ∫ − ∞ t x ( τ ) e − t − τ R C d τ y(t) = \frac{1}{RC}\int_{-\infty}^{t}x(\tau) e^{-\frac{t-\tau}{RC}}d\tau y(t)=RC1tx(τ)eRCtτdτ

其中, x ( t ) x(t) x(t) 是输入信号, y ( t ) y(t) y(t) 是输出信号, R R R C C C 分别是电阻和电容。

振荡器

振荡器是一种能够产生周期性波形的连续时间系统。其中最简单的振荡器是正弦波振荡器,它可以用下面的微分方程来描述:

d 2 y d t 2 + ω 0 2 y = 0 \frac{d^2y}{dt^2} + \omega_0^2 y = 0 dt2d2y+ω02y=0

其中, ω 0 \omega_0 ω0 是振荡器的固有频率。

5.1.2离散时间系统

移动平均滤波器

移动平均滤波器是一种常用于信号处理中的离散时间系统。它将当前时刻及其前面若干个时刻上的输入值取平均后作为输出值。其差分方程如下:

y [ n ] = 1 N ∑ k = 0 N − 1 x [ n − k ] y[n] = \frac{1}{N}\sum_{k=0}^{N-1}x[n-k] y[n]=N1k=0N1x[nk]

其中, N N N 是取平均时考虑的历史数据点数量。

差分方程实现数字积分器

数字积分器也是一种常见的离散时间系统。它对输入信号进行积分,并将积分结果作为输出。差分方程实现数字积分器如下:

y [ n ] = y [ n − 1 ] + x [ n ] Δ t y[n] = y[n-1] + x[n]\Delta t y[n]=y[n1]+x[n]Δt

其中, Δ t \Delta t Δt 是采样周期。

5.2 系统的互联

在信号与系统中,多个简单系统可以通过互联组成更复杂的系统。这些系统也可以分为连续时间系统和离散时间系统。

以下是一些常见的复杂系统示例:

5.2.1 连续时间系统

控制系统

控制系统是一种连续时间系统,其目的是根据输入信号和反馈信号来控制输出信号。它通常包括传感器、执行器和控制器等组件。

传输线路

传输线路是一种连续时间系统,其作用是将信号从一个地方传输到另一个地方。它可以用一组微分方程来描述。

5.2.2 离散时间系统

数字滤波器

数字滤波器是一种常见的离散时间系统,其作用是对数字信号进行过滤。它通常包括有限长脉冲响应(FIR)滤波器和无限长脉冲响应(IIR)滤波器等类型。

数字控制器

数字控制器是一种离散时间系统,其目的是根据输入信号和反馈信号来控制输出信号。它通常包括采样、嵌入式处理器和执行器等组件。

5.3 离散化

在实际应用中,连续时间信号可能需要转换为离散时间信号才能被处理或传输。这个过程被称为离散化。

离散化包括两个步骤:采样和量化。

5.3.1 采样

采样是指将连续时间信号转换为离散时间信号的过程。采样过程中,连续时间信号被在一定间隔内取样,并将每个取样值存储为一个数字。

采样频率决定了每秒钟取多少个样本。采样频率越高,所表示的信息就越精确、所需要存储的数据就越多。

5.3.2 量化

量化是指将取得的每个数字舍入到最接近的整数值,并将这些整数存储为二进制数值。量化级别决定了数字量化的精确度和所需存储空间大小。

量化级别越高,则数字表示就越精确、所需存储空间也就越大。通常,8位、16位或32位表示法被广泛使用。

6.连续时间与离散时间系统基本性质

6.1 有记忆系统与无记忆系统

有记忆系统是指系统的输出不仅与当前输入有关,还与过去一段时间内的输入有关。这种系统常见于连续时间系统中,如RC电路等。无记忆系统是指系统的输出只与当前输入有关,不受过去输入的影响。这种系统常见于离散时间系统中,如数字滤波器等。

6.2 线性系统与非线性系统

线性系统是指满足线性叠加原理的系统,即若输入为 x 1 ( t ) x_1(t) x1(t) x 2 ( t ) x_2(t) x2(t),则对应输出为 y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t),那么对于任意常数 a a a b b b,有:

a x 1 ( t ) + b x 2 ( t ) → a y 1 ( t ) + b y 2 ( t ) ax_1(t)+bx_2(t) \rightarrow ay_1(t)+by_2(t) ax1(t)+bx2(t)ay1(t)+by2(t)

非线性系统则不满足这个原理。

6.3 时不变性与时变系统

时不变系统是指其输出只与当前时刻的输入有关,而与时间无关。即如果将输入信号延迟或提前一段时间,则输出信号也会相应地延迟或提前同样的时间。时变系统则不满足这个特点。

6.4 因果性

因果性是指一个信号在某个时刻的取值只受到该时刻之前或同时刻的其他信号取值所影响,而不受该时刻之后的信号取值所影响。因此,在因果性条件下,一个信号不能预知未来。

6.5 稳定性

稳定性是指当输入信号有限时,输出也保持有限。在连续时间中通常使用BIBO(Bounded Input Bounded Output)稳定来描述;在离散时间中通常使用LTI(Linear Time-Invariant)稳定来描述。

6.6 可逆性与可逆系统

可逆性是指系统的输入信号可以唯一地确定输出信号,同时输出信号也可以唯一地确定输入信号。可逆系统是指满足可逆性条件的系统。

6.7 固有时延

固有时延是指一个系统的输出相对于输入存在一个固定的时间延迟,即在输入信号发生变化后,系统的输出不能立即响应,而需要一定的时间才能达到稳定状态。这种时延在实际应用中往往需要考虑和补偿。

7.习题

7.1求连续时间信号和离散时间信号的表达式

题目

考虑一个连续时间信号 x ( t ) = cos ⁡ ( 2 π f 0 t ) x(t)=\cos(2\pi f_0 t) x(t)=cos(2πf0t),其中 f 0 = 1000 f_0=1000 f0=1000 Hz,采样频率为 f s = 3000 f_s=3000 fs=3000 Hz。

求出离散时间信号 x [ n ] x[n] x[n] 的表达式。

题解:

由于采样频率为 f s = 3000 f_s=3000 fs=3000 Hz,所以采样周期为 T s = 1 f s = 1 3000 T_s=\frac{1}{f_s}=\frac{1}{3000} Ts=fs1=30001 秒。因此,在每个采样周期内,连续时间信号 x ( t ) x(t) x(t) 的取值只有一个,即:

x ( n T s ) = cos ⁡ ( 2 π f 0 n T s ) x(nT_s)=\cos(2\pi f_0 nT_s) x(nTs)=cos(2πf0nTs)

其中, n n n 为整数。将采样周期代入上式得到:

x [ n ] = cos ⁡ ( 2 π f 0 n T s ) = cos ⁡ ( 2 π f 0 f s n ) x[n]=\cos(2\pi f_0 nT_s)=\cos(2\pi \frac{f_0}{f_s}n) x[n]=cos(2πf0nTs)=cos(2πfsf0n)

由于 f 0 f s = 1000 3000 = 1 3 \frac{f_0}{f_s}=\frac{1000}{3000}=\frac{1}{3} fsf0=30001000=31,因此:

x [ n ] = cos ⁡ ( 2 π 3 n ) x[n]=\cos(\frac{2\pi}{3}n) x[n]=cos(32πn)

这就是离散时间信号 x [ n ] x[n] x[n] 的表达式。

解析:

本题考察了连续时间信号和离散时间信号的关系以及采样定理的应用。在求解过程中需要注意到采样周期的概念,并利用公式将连续时间信号转化为离散时间信号。最后需要注意单位的一致性,在计算中要将频率转化为角频率,并确保结果的单位正确。

7.2 自变量的变换

题目

已知连续时间系统的输入为 x ( t ) x(t) x(t),输出为 y ( t ) y(t) y(t),离散时间系统的输入为 x [ n ] x[n] x[n],输出为 y [ n ] y[n] y[n],它们之间的变换关系为:

y ( t ) = ∫ − ∞ ∞ h ( τ ) x ( t − τ ) d τ y [ n ] = ∑ k = − ∞ ∞ h [ k ] x [ n − k ] \begin{aligned} y(t) &= \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau \\ y[n] &= \sum_{k=-\infty}^{\infty} h[k]x[n-k] \end{aligned} y(t)y[n]=h(τ)x(tτ)dτ=k=h[k]x[nk]

其中 h ( t ) h(t) h(t) h [ n ] h[n] h[n] 分别是连续时间系统和离散时间系统的单位脉冲响应。现在要求推导出连续时间系统和离散时间系统之间的自变量变换关系。

题解

设一个连续时间信号 x ( t ) x(t) x(t) 与一个离散时间信号 x d [ n ] x_d[n] xd[n] 存在以下变换关系:

x d [ n ] = x ( n T ) x_d[n] = x(nT) xd[n]=x(nT)

其中 T T T 是采样周期。将此变换代入离散时间系统的输出公式中得:

y d [ n ] = ∑ k = − ∞ ∞ h [ k ] x d [ n − k ] = ∑ k = − ∞ ∞ h [ k ] x ( ( n − k ) T ) y_d[n] = \sum_{k=-\infty}^{\infty}h[k]x_d[n-k] = \sum_{k=-\infty}^{\infty}h[k]x((n-k)T) yd[n]=k=h[k]xd[nk]=k=h[k]x((nk)T)

将其与连续时间系统的输出公式做比较得:

y d [ n ] = T y ( n T ) y_d[n] = T y(nT) yd[n]=Ty(nT)

因此,离散时间系统和连续时间系统之间的自变量变换关系为:

t = n T t = nT t=nT

解析

该问题涉及到了信号处理中常见的连续时间和离散时间信号处理问题,并要求推导出它们之间自变量变换的关系。在解决该问题时,需要熟悉连续时间和离散时间信号处理方法,并能够灵活运用采样定理等相关理论进行推导。该问题对于加深对于信号处理中基本概念、理论和方法的理解有很好的帮助,是一道较难但有价值的题目。

7.3 指数信号与正弦信号

题目

考虑一个连续时间系统和一个离散时间系统,它们分别对应着以下的指数信号和正弦信号:

x c ( t ) = e j ω c t , x d [ n ] = sin ⁡ ( 2 π N n ) x_c(t) = e^{j\omega_ct},\quad x_d[n] = \sin(\frac{2\pi}{N}n) xc(t)=ejωct,xd[n]=sin(N2πn)

其中, ω c \omega_c ωc 是一个实数, N N N 是一个正整数。请回答以下问题:

  1. 这两个信号的周期性质分别是什么?
  2. 这两个信号的频谱性质分别是什么?
  3. 这两个信号是否能够被采样并还原?

题解

  1. 对于连续时间系统,其指数信号的周期性质是 ω c \omega_c ωc 的周期性,即 x c ( t + T ) = x c ( t ) e j ω c T x_c(t+T) = x_c(t)e^{j\omega_cT} xc(t+T)=xc(t)ejωcT,其中 T = 2 π / ω c T=2\pi/\omega_c T=2π/ωc。对于离散时间系统,其正弦信号的周期性质是 N N N 的周期性,即 x d [ n + N ] = x d [ n ] x_d[n+N] = x_d[n] xd[n+N]=xd[n]

  2. 对于连续时间系统,其频谱为 δ ( ω − ω c ) \delta(\omega - \omega_c) δ(ωωc),表示其只有一个频率为 ω c \omega_c ωc 的成分。对于离散时间系统,其频谱为 [ 1 2 i ( e j 2 π N n − e − j 2 π N n ) ] [\frac{1}{2i}(e^{j\frac{2\pi}{N}n}-e^{-j\frac{2\pi}{N}n})] [2i1(ejN2πnejN2πn)],表示其在 ± 2 k π N \pm \frac{2k\pi}{N} ±N2 处存在幅值为 1 1 1 的零点。

  3. 对于连续时间系统的指数信号,可以被采样并还原出来。因为它们具有周期性质且满足采样定理条件(即采样频率大于等于两倍信号最高频率),所以可以通过理想低通滤波器进行还原。但对于离散时间系统的正弦信号,则不能被完全还原出来。因为它们存在幅度为 0 0 0 的零点,在重构过程中会引入误差。

7.4 单位阶跃函数与冲激函数

题目

u ( t ) u(t) u(t) 为单位阶跃函数, δ ( t ) δ(t) δ(t) 为单位冲激函数,则下列等式成立的是?

A. u ( t ) = ∫ − ∞ t δ ( x ) d x u(t)=\int_{-\infty}^{t}δ(x)dx u(t)=tδ(x)dx

B. u ( t ) = ∫ − ∞ t δ ( x ) d x + δ ( t ) u(t)=\int_{-\infty}^{t}δ(x)dx+\delta(t) u(t)=tδ(x)dx+δ(t)

C. u ( t ) = ∫ 0 t δ ( x ) d x u(t)=\int_{0}^{t}δ(x)dx u(t)=0tδ(x)dx

D. u ( t ) = ∫ − ∞ ∞ δ ( x ) d x u(t)=\int_{-\infty}^{\infty}δ(x)dx u(t)=δ(x)dx

题解

首先,我们需要了解单位阶跃函数和单位冲激函数的定义。

定义1:单位阶跃函数,记作 u ( t ) u(t) u(t) ,其定义如下:

u ( t ) = { 0 , t < 0 1 , t ≥ 0 u(t)= \begin{cases} 0, & t<0 \\ 1, & t≥0 \end{cases} u(t)={0,1,t<0t0

定义2:单位冲激函数,记作 δ ( t ) δ(t) δ(t) ,其定义如下:

δ ( t ) = { + ∞ , t = 0 0 , t ≠ 0 δ(t)= \begin{cases} +\infty, & t=0 \\ 0, & t≠0 \end{cases} δ(t)={+,0,t=0t=0

满足以下性质:

  • 归一性: ∫ − ∞ ∞ δ ( x ) d x = 1 \int_{-\infty}^{\infty} δ(x) dx=1 δ(x)dx=1
  • 奇偶性: δ ( − t ) = δ ( t ) δ(-t)=δ(t) δ(t)=δ(t)

根据题意,可以得到:
∫ − ∞ t δ ( x ) d x = ∫ − ∞ 0 δ ( x ) d x + ∫ 0 t δ ( x ) d x = u ( t ) \int_{-\infty}^{t} δ(x) dx=∫_{-\infty}^{0} δ(x) dx+∫_{0}^{t} δ(x) dx= u(t) tδ(x)dx=0δ(x)dx+0tδ(x)dx=u(t)
因此,选项 A 正确。

解析

选项 A 利用了冲激函数的“积分”可以得到阶跃函数这一特点。在实际问题中,常常需要用到这个性质。例如,在电路中对于一个电压突变问题,我们可以看作在某个瞬间有一个电压脉冲信号(即冲击),那么这个信号对应的就是一个 Dirac 函数。而如果我们要计算这个信号接到一个电容器上带来的效应,则需要将这个 Dirac 函数进行积分处理,从而得到电容器上的电压随时间变化的情况(即阶跃响应)。

7.5 连续时间系统和离散时间系统的性质

题目

考虑一个连续时间系统和一个离散时间系统,它们的状态方程分别为:

连续时间系统: x ˙ ( t ) = A x ( t ) + B u ( t ) \dot{x}(t)=Ax(t)+Bu(t) x˙(t)=Ax(t)+Bu(t)

离散时间系统: x ( k + 1 ) = A x ( k ) + B u ( k ) x(k+1)=Ax(k)+Bu(k) x(k+1)=Ax(k)+Bu(k)

其中, A A A B B B是常数矩阵, u ( t ) u(t) u(t) u ( k ) u(k) u(k)是输入信号。假设这两个系统的初始状态相同,即 x ( 0 ) = x 0 = x ( 1 ) , x ( 2 ) , ⋯   , x ( n ) x(0)=x_0=x(1),x(2),\cdots,x(n) x(0)=x0=x(1),x(2),,x(n)。证明:当 t → ∞ t \rightarrow \infty t时,连续时间系统和离散时间系统的状态序列收敛到相同的极限。

题解

首先让我们定义一个新的变量 e ( t ) = x c ( t ) − x d ( k ) e(t) = x_c (t) - x_d (k) e(t)=xc(t)xd(k),其中 x c ( t ) x_c (t) xc(t) x d ( k ) x_d (k) xd(k) 分别表示连续时间系统和离散时间系统在同一时刻的实际状态值。

我们可以将 e ( t ) e(t) e(t) 的导数表示为:

e ˙ ( t ) = x c ˙ ( t ) − x d ˙ ( k ) = A x c ( t ) + B u ( t ) − A x d ( k ) − B u ( k ) = A ( x c ( t ) − x d ( k ) ) = A e ( t ) \begin{aligned} \dot{e}(t) &= \dot{x_c}(t) - \dot{x_d}(k) \\ &= Ax_c(t) + Bu(t) - Ax_d(k) - Bu(k) \\ &= A(x_c(t)-x_d(k)) \\ &= Ae(t) \end{aligned} e˙(t)=xc˙(t)xd˙(k)=Axc(t)+Bu(t)Axd(k)Bu(k)=A(xc(t)xd(k))=Ae(t)

注意到上式中 x d ˙ ( k ) \dot{x_d}(k) xd˙(k) 实际上等于 A x d ( k − 1 ) + B u ( k − 1 ) A x_d (k-1)+B u(k-1) Axd(k1)+Bu(k1) ,但由于初始状态相等,我们可以省略这一项。

另一方面,在任意时刻 t = t 0 + t ′ t=t_0+t' t=t0+t(其中 t 0 t_0 t0是整数),我们可以将 x c ( t ′ ) x_c(t') xc(t)表示为 x c ′ ( t ′ ) = e A t ′ ( x 0 − u T A − 1 B ) + u T A − 1 B x_c'(t')=e^{At'}(x_0-u^TA^{-1}B)+u^TA^{-1}B xc(t)=eAt(x0uTA1B)+uTA1B

类似地,在任意时刻 k = k 0 + k ′ k=k_0+k' k=k0+k(其中 k 0 k_0 k0是整数),我们可以将 x d ( k ′ ) x_d(k') xd(k)表示为 x d ′ ( k ′ ) = A k ′ ( x 0 − u T A − 1 B ) + ∑ i = 0 k ′ − 1 A i B u ( k ′ − i − 1 ) x_d'(k')=A^{k'}(x_0-u^TA^{-1}B)+\sum_{i=0}^{k'-1} A^i Bu(k'-i-1) xd(k)=Ak(x0uTA1B)+i=0k1AiBu(ki1)

于是有:

∣ x c ′ ( t ′ ) − x d ′ ( k ′ ) ∣ = ∣ e A t ′ ( x 0 − u T A − 1 B ) − A k ′ ( x 0 − u T A − 1 B ) ∣ ≤ ∣ e A t ′ ∣ ∣ x 0 − u T A − 1 B ∣ + ∣ A k ′ ∣ ∣ u T A − 1 B ∣ ≤ C e σ t ′ \begin{aligned} |x_c'(t')-x_d'(k')| &= |e^{At'}(x_0-u^TA^{-1}B)-A^{k'}(x_0-u^TA^{-1}B)| \\ &\leq |e^{At'}||x_0-u^TA^{-1}B|+|A^{k'}||u^TA^{-1}B| \\ &\leq Ce^{\sigma t'} \end{aligned} xc(t)xd(k)=eAt(x0uTA1B)Ak(x0uTA1B)eAt∣∣x0uTA1B+Ak∣∣uTA1BCeσt

其中 σ = max ⁡ ( Re { λ i } ) > 0 , i = 1 , 2 , ⋯   , n , λ i  是  A  的特征值 \sigma=\max(\text{Re}\{\lambda_i\})>0,i=1,2,\cdots,n,\lambda_i \text{ 是 } A \text{ 的特征值} σ=max(Re{λi})>0,i=1,2,,n,λi  A 的特征值。第三行不等式采用了矩阵指数函数的性质:对于任意矩阵 A , B , C , D , A + B = C + D , A , B , C , D  维度相同 A,B,C,D,A+B=C+D,A,B,C,D \text { 维度相同} A,B,C,D,A+B=C+D,A,B,C,D 维度相同,有 ∣ e A + B − e C + D ∣ ≤ ∣ A − C ∣ + ∣ B − D ∣ |e^{A+B}-e^{C+D}| \leq |A-C|+|B-D| eA+BeC+DAC+BD

所以当 t ′ → ∞ , k ′ → ∞ , t ′ − k ′ = Δ t ′ t' \rightarrow \infty,k' \rightarrow \infty,t'-k'=\Delta t' t,k,tk=Δt 是常数时,

∣ x c ′ ( t ′ ) − x d ′ ( k ′ ) ∣ ≤ C e σ t ′ |x_c'(t')-x_d'(k')|\leq Ce^{\sigma t'} xc(t)xd(k)Ceσt

因此,

∣ x c ( Δ t ′ + n ) − x d ( n ) ∣ = ∣ x c ′ ( n + Δ t ′ ) − x d ′ ( n ) ∣ → Δ t ′ → 0 ∣ x c ( n ) − x d ( n ) ∣ → n → + ∞ 0 |x_c(\Delta t'+n)-x_d(n)|=|x_c'(n+\Delta t')-x_d'(n)|\\ \xrightarrow{\Delta t' \rightarrow 0}|x_c(n)-x_d(n)|\\ \xrightarrow{n \rightarrow +\infty } 0 xc(Δt+n)xd(n)=xc(n+Δt)xd(n)Δt0 xc(n)xd(n)n+ 0

证毕。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值