前言
笔者平常运行pytest
用例时,通常使用命令行方式,像这样
pytest -v pxl/test_dir/test_demo.py::TestDemo::test_my_var
,执行某一条case,但每次命令行敲也挺麻烦的。那如何在python
代码中调用pytest
呢?带着疑问一起看。
解答疑问
在main()
函数中调用pytest.main()
就可以啦。
我们深入探讨一下 pytest.main
的用法和一些常见的应用场景。
什么是pytest.main
?
pytest.main
是 Pytest 框架中一个非常实用的函数,它用于从命令行运行测试集或者以编程方式运行测试。通过调用 pytest.main()
函数,我们可以在代码中启动测试过程,并获取测试结果或者进行进一步的操作。
如何使用 pytest.main 运行测试用例?
我们看一个简单示例:
test_demo.py
import pytest
def test_add():
assert 1 + 1 == 2
if __name__ == "__main__":
pytest.main([__file__])
在这个示例中,我们定义了一个简单的测试用例 test_add
,用于检查加法运算的正确性。然后,我们通过 pytest.main([__file__])
来执行当前文件中的测试用例。
要运行这个测试用例,只需在命令行中执行以下命令:
python test_demo.py
Pytest
将会自动发现并执行 test_add
测试用例,并生成测试结果报告。
源码定义
def main(
args: Optional[Union[List[str], "os.PathLike[str]"]] = None,
plugins: Optional[Sequence[Union[str, _PluggyPlugin]]] = None,
) -> Union[int, ExitCode]:
"""Perform an in-process test run.
:param args: List of command line arguments.
:param plugins: List of plugin objects to be auto-registered during initialization.
:returns: An exit code.
"""
可以看到有两个参数,args
传一个list
对象,list
里面是多个命令行的参数;plugins
传一个list
对象,list
里面是初始化的时候需注册的插件
常用参数
-m <标记>
或--mark=<标记>
:只运行被标记为<标记>
的测试用例。-k <关键字表达式>
或--keyword=<关键字表达式>
:只运行名称中包含<关键字表达式>
的测试用例。-s
或--capture=no
:禁止捕获标准输出和标准错误,将其直接打印到控制台。-v
或--verbose
:以详细模式运行测试,显示更多的信息,如每个测试用例的名称、结果和错误信息。--collect-only
:只收集测试用例但不执行它们,可以用于查看测试集中的所有可用测试。- –ignore:忽略某个测试模块
- -q: 简单输出模式, 不输出环境信息
- -x: 出现一条测试用例失败就退出测试。在调试阶段非常有用,当测试用例失败时,应该先调试通过,而不是继续执行测试用例。
这些参数可以单独使用,也可以组合使用。例如,可以同时使用 -m
和 -k
参数来指定运行特定标记和关键字的测试用例。像这样
pytest.main(["-s", "-v", "-m", "p0"])
举例说明
-m
import pytest
@pytest.mark.p0
def test_addition():
assert 2 + 2 == 4
@pytest.mark.p1
def test_subtraction():
assert 5 - 3 == 2
if __name__ == "__main__":
pytest.main(["-m", "p0"])
在这个示例中,我们使用 @pytest.mark
装饰器为两个测试用例标记了不同的标记。然后,我们在 pytest.main
函数调用时传递了 -m p0
参数,表示只运行被标记为 p0
的测试用例。这样就可以只运行 test_addition
测试用例。
-k
import pytest
def test_addition():
assert 2 + 2 == 4
def test_subtraction():
assert 5 - 3 == 2
def test_multiplication():
assert 2 * 3 == 6
if __name__ == "__main__":
pytest.main(["-k", "addition"])
在这个示例中,我们定义了三个测试用例,分别测试加法、减法和乘法运算的正确性。然后,我们在 pytest.main
函数调用时传递了 -k addition
参数,表示只运行名称中包含 “addition” 关键字的测试用例。这样就可以只运行 test_addition
测试用例。
–ignore
test_demo.py
import pytest
def test_addition():
assert 2 + 2 == 4
def test_subtraction():
assert 5 - 3 == 2
if __name__ == "__main__":
pytest.main(["--ignore=test_contract_controller.py"])
在这个示例中,我们定义了两个测试用例 test_addition
和 test_subtraction
。然后,我们在 pytest.main
函数调用时传递了 --ignore=test_contract_controller.py
参数,表示忽略名为 test_contract_controller.py
的测试模块,不运行其中的测试用例。
–durations
import pytest
import time
def test_slow_function():
time.sleep(2)
assert True
def test_fast_function():
assert True
if __name__ == "__main__":
pytest.main(["--durations=5"])
在这个示例中,我们定义了两个测试用例,test_slow_function
和 test_fast_function
,分别模拟了一个耗时较长和一个耗时较短的测试。然后,我们在 pytest.main
函数调用时传递了 --durations=5
参数,表示输出最慢的 5 个测试用例的执行时间。这样可以帮助我们识别出执行时间较长的测试用例,进行性能优化或者重点关注。
–collect-only
import pytest
def test_addition():
assert 2 + 2 == 4
def test_subtraction():
assert 5 - 3 == 2
if __name__ == "__main__":
pytest.main(["--collect-only"])
我们在 pytest.main
函数调用时传递了 --collect-only
参数,这样只会收集用例,而不会执行。
运行指定用例
运行指定目录下的case
pytest.main(["--collect-only", "/panda-test/peilian/test_dir/"])
运行指定模块下的case
pytest.main(["--collect-only", "/panda-test/peilian/test_dir/test_demo.py"])
运行指定的case
pytest.main(["--collect-only", "/panda-test/peilian/test_dir/test_demo.py::test_01"])
plugins参数
我们自定义的插件放到 conftest.py
会被pytest
查找到,如果不是写到conftest.py
的插件内容,可以通过 plugins
参数指定加载。我们看个案例:
import pytest
class MyPlugin(object):
def pytest_sessionstart(self):
print("*** test run start ***")
def test_division():
assert 10 / 2 == 5
if __name__ == "__main__":
pytest.main(["/panda-test/peilian/test_dir/test_demo.py::test_division"], plugins=[MyPlugin()])
这里又涉及到一个新的钩子函数pytest_sessionstart
,先不用管,之后写一篇文章来介绍。我们运行case
,会发现在执行最开始会输出*** test run start ***
。说明已经加载插件成功了。
plugins参数的作用就是指定需加载的插件,也可以指定多个。
最后
pytest.main
是一个非常有用的函数,它允许我们以编程的方式执行测试用例。通过灵活运用 pytest.main
,我们可以更好地集成测试流程和自动化工具,提高测试效率和质量。
以上就是今天的全部内容分享,觉得有用的话欢迎点赞收藏哦!
Python经验分享
学好 Python 不论是用于就业还是做副业赚钱都不错,而且学好Python还能契合未来发展趋势——人工智能、机器学习、深度学习等。
小编是一名Python开发工程师,自己整理了一套最新的Python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。如果你也喜欢编程,想通过学习Python转行、做副业或者提升工作效率,这份【最新全套Python学习资料】 一定对你有用!
小编为对Python感兴趣的小伙伴准备了以下籽料 !
对于0基础小白入门:
如果你是零基础小白,想快速入门Python是可以考虑培训的!
- 学习时间相对较短,学习内容更全面更集中
- 可以找到适合自己的学习方案
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习、Python量化交易等学习教程。带你从零基础系统性的学好Python!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
最新全套【Python入门到进阶资料 & 实战源码 &安装工具】(安全链接,放心点击)
我已经上传至CSDN官方,如果需要可以扫描下方官方二维码免费获取【保证100%免费】
*今天的分享就到这里,喜欢且对你有所帮助的话,记得点赞关注哦~下回见 !