NOI2020 CSP-J 4题 方格取数讲解 详细的C++真题讲解

本文详细讲解了NOI2020 CSP-J第四题——方格取数,通过动态规划和记忆化搜索两种方法进行求解。介绍了状态转移方程,并分析了时间复杂度,强调了初始化的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(2020的题目难度提升了)

 我们来看第四题-方格取数 的讲解

(洛谷P7074 一本通2007 懒得搜看下面)

想要的满分有一下办法(口误)

1.动态规划DP yyds

从上下走不方便看,先改成可以向下向左向右走。
设f[i][j][0]表示现在在(i,j),向左。f[i][j][1]表示向右,则答案为max(f[n][m][0],f[n][m][1])。
因为向下走和前面方向无关,所以:
f[i][j][k]=max(f[i-1][j][k],f[i-1][j][k])+a[i][j]。当然,两个方向一定要分别转移,一正一倒。

#include <bits/stdc++.h>
using namespace std;
long long dp[1001][1001][2];
int a[1001][1001], n, m;
int main() {
 	cin >> n >> m;
 	for (int i = 1; i <= n; i++) {
 		for (int j = 1; j <= m; j++) {
 			scanf("%d", &a[i][j]);
 		}
 	}
 	memset(dp, 0x80, sizeof(dp));
 	dp[1][1][0] = dp[1][1][1] = a[1][1];
 	for (int i &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaoliuAH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值