题意:
在一个n*m的矩阵中有两只虫子,一只从左上角向右下角移动,另外一只从左下角向右上角移动。
要求:
1.第一只虫子每次只能向左或者向下移动一格,另外一只只能向上或者向右移动一格。
2.两只虫子的路径最多只能重合一点。
3.求解两只虫子路径中除去重合那点其余各点的权值之和最大。
思路:
相当于分成四个部分去求各自到达交点的所得到的值,这样才能保证只经过了一个交点;
dp1是从从左上角往中间走,dp2是右下角往中间走,dp3是左下角往中间走,dp4是右上角往中间走;
坑点:
边界上的点一定不可能作为唯一的交点。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn = 1000 + 10;
ll a[maxn][maxn];
ll dp1[maxn][maxn];
ll dp2[maxn][maxn];
ll dp3[maxn][maxn];
ll dp4[maxn][maxn];
#define INF 0x3f3f3f3f
typedef long long ll;
int main()
{
ll n,m;
while( ~ scanf("%I64d%I64d",&n,&m))
{
memset(dp1,0,sizeof(dp1));
memset(dp2,0,sizeof(dp2));
memset(dp3,0,sizeof(dp3));
memset(dp4,0,sizeof(dp4));
for(ll i = 1; i <= n; i ++)
{
for(ll j = 1; j <= m; j ++)
{
scanf("%I64d",&a[i][j]);
}
}
for(ll i = 1; i <= n; i ++)
{
for(ll j = 1; j <= m; j ++)
{
dp1[i][j] = max(dp1[i -1][j],dp1[i][j - 1]) + a[i][j];
}
}
for(ll i = n; i >= 1; i --)
{
for(ll j = m; j >= 1; j --)
{
dp2[i][j] = max(dp2[i][j + 1],dp2[i + 1][j]) + a[i][j];
}
}
for(ll i = n; i >= 1; i --)
{
for(ll j = 1; j <= m; j ++)
{
dp3[i][j] = max(dp3[i + 1][j],dp3[i][j - 1]) + a[i][j];
}
}
for(ll i = 1; i <= n; i ++)
{
for(ll j = m; j >= 1; j --)
{
dp4[i][j] = max(dp4[i - 1][j],dp4[i][j + 1]) + a[i][j];
}
}
ll ans = 0;
//边界不肯能作为交点
for(ll i = 2; i < n; i ++)
{
for(ll j = 2; j < m; j ++)
{
ans = max(ans,dp1[i - 1][j] + dp2[i + 1][j]+dp3[i][j - 1] + dp4[i][j + 1]);
ans = max(ans,dp1[i][j - 1] + dp2[i][j + 1] + dp3[i + 1][j] + dp4[i - 1][j]);
}
}
cout << ans << endl;
}
return 0;
}