Hadoop1.x MapReduce 实现二次排序 实现WritableComparable接口

一、前言

利用MapReduce来实现,首先按照第一列升序排列,当第一列相同时,第二列升序排列
    3   3
    3   2
    3   1
    2   2
    2   1
    1   1
-------------------------------------
预期结果
    1   1
    2   1
    2   2
    3   1
    3   2
    3   3

主要思路:
因为map输出的 <key,value>是按照key来排序,value不能参与排序,所以这里就自定义一个key 其实现WritableComparable类,具体自定义方式见代码中的NewK2的实现部分。

二、代码

package sort;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.net.URI;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;

public class sort {

    static final String INPUT_PATH = "hdfs://hadoop1:9000/input";
    static final String OUT_PATH = "hdfs://hadoop1:9000/out";

    public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();

        final FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), conf);
        if(fileSystem.exists(new Path(OUT_PATH))){
            fileSystem.delete(new Path(OUT_PATH), true);
        }

        final Job job = new Job(conf,sort.class.getSimpleName());

        //指定输入目录
        FileInputFormat.setInputPaths(job, new Path(INPUT_PATH));
        //指定输入数据进行格式化的类
        job.setInputFormatClass(TextInputFormat.class);

        //指定自定义Mapper类
        job.setMapperClass(MyMapper.class);
        //指定Mapper输出的key,value类型
        job.setMapOutputKeyClass(NewK2.class);
        job.setMapOutputValueClass(LongWritable.class);

        //分区
        job.setPartitionerClass(HashPartitioner.class);
        job.setNumReduceTasks(1);

        //指定自定义的Reducer类
        job.setReducerClass(MyReducer.class);
        job.setOutputKeyClass(LongWritable.class);
        job.setOutputValueClass(LongWritable.class);

        //指定输出目录
        FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));
        //指定输出的格式化类
        job.setOutputFormatClass(TextOutputFormat.class);

        //将整个作业提交给JobTracker
        job.waitForCompletion(true);
    }

    static class MyMapper extends Mapper<LongWritable, Text, NewK2, LongWritable>{

        @Override
        protected void map(LongWritable key, Text v1,
                Mapper<LongWritable, Text, NewK2, LongWritable>.Context context)
                throws IOException, InterruptedException {

            String[] splited = v1.toString().split("\t");

            final long k2Long = Long.parseLong(splited[0]);

            final long v2Long = Long.parseLong(splited[1]);

            NewK2 k2 = new NewK2(k2Long,v2Long);

            context.write(k2, new LongWritable(v2Long));


        }
    }

    static class MyReducer extends Reducer<NewK2, LongWritable, LongWritable, LongWritable>{

        @Override
        protected void reduce(
                NewK2 k2,
                Iterable<LongWritable> v2s,
                Reducer<NewK2, LongWritable, LongWritable, LongWritable>.Context context)
                throws IOException, InterruptedException {

            context.write(new LongWritable(k2.first), new LongWritable(k2.second));
        }

    }

    static class NewK2 implements WritableComparable<NewK2>{

        Long first;//第一列数
        Long second;//第二列数

        public NewK2(){}

        public NewK2(Long first,Long second){

            this.first = first;
            this.second = second;

        }


        @Override
        public void readFields(DataInput in) throws IOException {

            this.first = in.readLong();
            this.second = in.readLong();
        }

        @Override
        public void write(DataOutput out) throws IOException {

            out.writeLong(first);
            out.writeLong(second);
        }

        /**
         * key排序是会调用该方法
         * 如果当第一列不同时,第一列升序,当第一列相同时,第二列升序
         */
        @Override
        public int compareTo(NewK2 o) {
            final long minus = this.first - o.first;

            if(minus != 0){

                return (int)minus;
            }


            return (int)(this.second - o.second);
        }

        @Override
        public int hashCode() {

            return this.first.hashCode() + this.second.hashCode();
        }

        @Override
        public boolean equals(Object obj) {

            if(!(obj instanceof NewK2)){

                return false;
            }

            NewK2 ok2 = (NewK2)obj;

            return (this.first == ok2.first) && (this.second == ok2.second);
        }

    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值