猴子搬香蕉问题。

本文解析了一个有趣的数学问题——猴子如何将100根香蕉通过50米的距离搬运回家,并确保每走一米都能吃到香蕉。文章详细阐述了解题思路,分为两个阶段:第一阶段猴子需要来回搬香蕉,直到剩余香蕉数量不多于50根;第二阶段猴子只需直接携带剩余香蕉继续前进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走
1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。(提示:他可以把香蕉放下往返的走,但是必须保证它每走一米都能有香蕉吃。也可以走到n米时,放下一些香蕉,拿着n根香蕉走回去重新搬50根。)

看了很多文章。好像分析的不是很清楚。只好自己动手了。

解析:这种试题通常有一个迷惑点,让人看不懂题目的意图。此题迷惑点在于:走一米吃一根香蕉,一共走50米,那不是把50根香蕉吃完了吗?如果要回去搬另外50根香蕉,则往回走的时候也要吃香蕉,这样每走一米需要吃掉三根香蕉,走50米岂不是需要150根香蕉?

其实不然,本题关键点在于:猴子搬箱子的过程其实分为两个阶段,第一阶段:来回搬,当香蕉数目大于50根时,猴子每搬一米需要吃掉三根香蕉。第二阶段:香蕉数《=50,直接搬回去。每走一米吃掉1根。

我们分析第一阶段:假如把100根香蕉分为两箱。一箱50根。

第一步,把A箱搬一米,吃一根。

第二步,往回走一米,吃一根。

第三步,把B箱搬一米,吃一根。

这样,把所有香蕉搬走一米需要吃掉三根香蕉。

这样走到第几米的时候,香蕉数刚好小于50呢?

100-(n*3)<50 && 100-(n-1*3)>50

走到16米的时候,吃掉48根香蕉,剩52根香蕉。这步很有意思,它可以直接搬50往前走,也可以再来回搬一次,但结果都是一样的。到17米的时候,猴子还有49根香蕉。这时猴子就轻松啦。直接背着走就行。

第二阶段:

走一米吃一根。

把剩下的50-17=33米走完。还剩49-33=16根香蕉。

 

 

### 实验概述 **实验目标**: 1. 理解一阶谓词逻辑的原理及其在知识表示和推理中的应用。 2. 学会定义特定的逻辑过程,包括谓词、连接词和量词。 3. 使用条件语句定义执行对象的动作,并通过状态变化表示这些动作。 4. 掌握Matlab平台中function函数的使用方法,编写基本的谓词逻辑演示程序。 ### 问题描述 房间内有一只猴子、一个箱子和一串挂在天花板上的香蕉猴子需要把箱子香蕉下方,然后爬到箱子上摘下香蕉。具体位置如下图所示: - 初始状态: - `AT(monkey, a)`:猴子在位置a - `~HAND(s)`:猴子手里什么也没有 - `AT(box, c)`:箱子在位置c - `~ONBOX(monkey)`:猴子不在箱子上 - `AT(banana, b)`:香蕉在位置b - 目标状态: - `AT(box, b)`:箱子在位置b - `ONBOX(monkey)`:猴子在箱子上 - `HAND(banana)`:猴子手里拿着香蕉 - `AT(monkey, b)`:猴子在位置b - `AT(banana, b)`:香蕉在位置b ### 解决方案 #### 1. 定义谓词 - `AT(x, y)`:x在y处,其中`x ∈ {monkey, box, banana}`,`y ∈ {a, b, c}` - `HAND(s)`:猴子手里拿着s,其中`s ∈ {box, banana}` - `ONBOX(monkey)`:猴子在箱子上 #### 2. 表示初始状态和目标状态 - **初始状态**: ```logic AT(monkey, a) ∧ ~HAND(s) ∧ AT(box, c) ∧ ~ONBOX(monkey) ∧ AT(banana, b) ``` - **目标状态**: ```logic AT(box, b) ∧ ONBOX(monkey) ∧ HAND(banana) ∧ AT(monkey, b) ∧ AT(banana, b) ``` #### 3. 定义操作谓词 - `go(m, n)`:猴子从m走到n,其中`m, n ∈ {a, b, c}` - `movebox(m, n)`:猴子把箱子从m到n,其中`m, n ∈ {a, b, c}` - `onbox(m)`:猴子在m处爬上箱子,其中`m ∈ {a, b, c}` - `catch(banana)`:猴子摘到香蕉 #### 4. 条件和动作 - **`go(m, n)`**: - **条件**: `AT(monkey, m)` - **动作**: 删除 `AT(monkey, m)`,增加 `AT(monkey, n)` - **`movebox(m, n)`**: - **条件**: `AT(monkey, m) ∧ ~HAND(s) ∧ AT(box, m)` - **动作**: 删除 `~HAND(s) ∧ AT(box, m)`,增加 `HAND(s) ∧ AT(box, n) ∧ AT(monkey, n)` - **`onbox(m)`**: - **条件**: `AT(monkey, m) ∧ ~HAND(s) ∧ AT(box, m) ∧ AT(banana, m) ∧ ~ONBOX(monkey)` - **动作**: 删除 `~ONBOX(monkey)`,增加 `ONBOX(monkey)` - **`catch(banana)`**: - **条件**: `AT(monkey, m) ∧ ~HAND(s) ∧ AT(box, m) ∧ AT(banana, m) ∧ ONBOX(monkey)` - **动作**: 删除 `~HAND(s)`,增加 `HAND(banana)` #### 5. 状态转换 按照以下行动计划逐步进行状态转换,直到达到目标状态: 1. `go(a, c)`:猴子从a走到c 2. `movebox(c, b)`:猴子把箱子从c到b 3. `onbox(b)`:猴子在b处爬上箱子 4. `catch(banana)`:猴子摘到香蕉 ### 实验任务 #### 基础实验 复现附录中的源程序代码,完成猴子香蕉的基本实验演示。 #### 进阶实验 1. **猴子在b点,箱子在a点**: - 修改初始状态,重新运行程序,验证猴子能否成功摘到香蕉。 2. **箱子在c点,猴子在c点且在箱子上**: - 修改初始状态,重新运行程序,验证猴子能否成功摘到香蕉。 #### 创新实验 自行设计程序,使得任意给定猴子和箱子的初始状态,猴子均能通过若干步将香蕉摘下。 ### 附录 - 程序代码样例 #### 主函数 ```matlab % 猴子香蕉程序 clear all close all clc % 定义 Monkey_banama函数中 4个变量分别为,猴子的位置,盒子的位置,香蕉的位置,猴子相对箱子的位置 % Monkey_location为猴子的位置,猴子在 a处,定义为-1;在 b处,定义为 0;在 c处定义为 1; % Box_location为箱子的位置,箱子在 a处,定义为-1;在 b处,定义为 0;在 c处定义为 1; % Banama_location为香蕉的位置,香蕉在 a处,定义为-1;在 b处,定义为 0;在 c处定义为 1; % Monkey_Box_state为猴子相对箱子的位置,猴子在箱子上,定义为 1;猴子不在箱子上,定义为-1; % 当给定初始状态后,根据初始状态的情况,来确定猴子的下一步状态; % 定义如下几种状态: % 11:猴子从 a处移到 b处; [Step1, Step2, Step3, Step4] = Monkey_banana(-1, 1, -1) % 返回值中的四步的含义如下: % Step1 = goto(x, y);意为猴子从 x点到达 y点,本问题中定义,a点为-1,b点为 0,c点为 1, % 例如,Step1 = goto(-1, 1),意为猴子从 a点去往 c点; % Step2 = move_box(x, y);意为箱子从 x点移动到 y点,本问题中定义,a点为-1,b点为 0,c点为 1, % 例如 Step2 = goto(1, 0),意为箱子从 c点移动到 b点; % Step3 = on_box(x),意为猴子是否在箱子上,如果不在箱子上,定义为-1,如果猴子在箱子上,定义为 1; % Step4 = catch_banana(x),意为猴子是否摘到了香蕉,如果摘到了香蕉,定义为 1,如果没有摘到香蕉,定义为-1; % 综上,可根据函数返回值情况,来看出猴子的整体行动方案 ``` #### 嵌入子函数 ```matlab function [Step1, Step2, Step3, Step4] = Monkey_banana(Monkey_location, Box_location, Monkey_Box_state) % 定义 Monkey_banama函数中 4个变量分别为,猴子的位置,盒子的位置,猴子相对箱子的位置 % Monkey_location为猴子的位置,猴子在 a处,定义为-1;在 b处,定义为 0;在 c处定义为 1; % Box_location为箱子的位置,箱子在 a处,定义为-1;在 b处,定义为 0;在 c处定义为 1; % Monkey_Box_state为猴子相对箱子的位置,猴子在箱子上,定义为 1;猴子不在箱子上,定义为-1; % 当给定初始状态后,根据初始状态的情况,来确定猴子的下一步状态; % 定义如下几种状态: % 11:猴子从 a处移到 b处; Step1 = zeros(1, 2); a = -1; b = 0; c = 1; goto = zeros(1, 2); on_box = -1; move_box = zeros(1, 2); catch_banana = -1; if Monkey_location == -1 && Box_location == 1 && Monkey_Box_state == -1 % Step1 = goto(a, c); Step1 = [-1, 1]; Monkey_location = 1; else % 如不满足上述情况,则该步骤可忽略,用 1000代替无效值; Step1 = 1000; end if Monkey_location == 1 && Box_location == 1 && Monkey_Box_state == -1 % Step2 = move_box(c, b); Step2 = [1, 0]; Monkey_location = 0; Box_location = 0; else % 如不满足上述情况,则该步骤可忽略,用 1000代替无效值; Step2 = 1000; end if Monkey_location == 0 && Box_location == 0 && Monkey_Box_state == -1 % Step3 = on_box; Step3 = 1; Monkey_location = 0; Monkey_Box_state = 1; else % 如不满足上述情况,则该步骤可忽略,用 1000代替无效值; Step3 = 1000; end if Monkey_location == 0 && Box_location == 0 && Monkey_Box_state == 1 catch_banama = 1; % Step4 = catch_banama; Step4 = 1; else % 如不满足上述情况,则该步骤可忽略,用 1000代替无效值; Step4 = 1000; end end ``` 希望以上内容对你完成实验有所帮助!如果有任何疑问,请随时提问。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值