猴子搬香蕉问题。

一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走
1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。(提示:他可以把香蕉放下往返的走,但是必须保证它每走一米都能有香蕉吃。也可以走到n米时,放下一些香蕉,拿着n根香蕉走回去重新搬50根。)

看了很多文章。好像分析的不是很清楚。只好自己动手了。

解析:这种试题通常有一个迷惑点,让人看不懂题目的意图。此题迷惑点在于:走一米吃一根香蕉,一共走50米,那不是把50根香蕉吃完了吗?如果要回去搬另外50根香蕉,则往回走的时候也要吃香蕉,这样每走一米需要吃掉三根香蕉,走50米岂不是需要150根香蕉?

其实不然,本题关键点在于:猴子搬箱子的过程其实分为两个阶段,第一阶段:来回搬,当香蕉数目大于50根时,猴子每搬一米需要吃掉三根香蕉。第二阶段:香蕉数《=50,直接搬回去。每走一米吃掉1根。

我们分析第一阶段:假如把100根香蕉分为两箱。一箱50根。

第一步,把A箱搬一米,吃一根。

第二步,往回走一米,吃一根。

第三步,把B箱搬一米,吃一根。

这样,把所有香蕉搬走一米需要吃掉三根香蕉。

这样走到第几米的时候,香蕉数刚好小于50呢?

100-(n*3)<50 && 100-(n-1*3)>50

走到16米的时候,吃掉48根香蕉,剩52根香蕉。这步很有意思,它可以直接搬50往前走,也可以再来回搬一次,但结果都是一样的。到17米的时候,猴子还有49根香蕉。这时猴子就轻松啦。直接背着走就行。

第二阶段:

走一米吃一根。

把剩下的50-17=33米走完。还剩49-33=16根香蕉。

 

 

猴子香蕉问题是一个经典的逻辑推理问题。在这个问题中,房间内有一个猴子、一个箱子和一串香蕉猴子必须将箱子移动到香蕉下方,然后再爬上箱子来摘到香蕉。为了解决这个问题,我们可以使用一阶谓词逻辑来表示问题的状态和操作。 首先,我们需要定义一些谓词来表示问题的状态。例如,位置谓词P(x)表示物体x的位置,可以取值为a、b、c,分别表示物体位于位置a、b、c。接下来,我们定义谓词Monkey(x)表示物体x是猴子,Box(x)表示物体x是箱子,Banana(x)表示物体x是香蕉。同时,我们还可以定义谓词On(x, y)表示物体x位于物体y上方。 根据问题的描述,我们可以列出问题的初始化状态和目标状态: 初始化状态:Monkey(m) ∧ Box(b) ∧ Banana(c) ∧ On(m, a) ∧ On(b, a) ∧ On(c, b) 目标状态:Monkey(m) ∧ Box(b) ∧ Banana(c) ∧ On(m, b) ∧ On(b, c) 接下来,我们可以定义操作谓词来表示猴子的动作: GO(m, n):猴子从位置m移动到位置n,其中m、n可以取值为a、b、c。 MOVE(m, n):猴子将箱子从位置m移动到位置n,其中m、n可以取值为a、b、c。 CLIMB(m):猴子在位置m爬上箱子,其中m可以取值为a、b、c。 PICK(m):猴子在位置m摘到香蕉,其中m可以取值为a、b、c。 现在,我们可以使用这些谓词和操作来解决猴子香蕉问题。具体的解题步骤就是通过一系列操作将初始状态转化为目标状态。例如,可以通过GO(a, c)、MOVE(a, b)、CLIMB(b)和PICK(b)等操作来实现目标状态。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值