70. 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
题解:第一种方法就是多些几个观察规律发f(2) = 2, f(3) = 3 ,f(4) =5,f(6)=8.......
第二种方法:因为一次能爬1阶或者2阶,因此爬上第n阶f(n) 为 爬上第n-1阶的方法f(n-1)与爬上第n-2阶的方法f(n-2)之和
public int climbStairs(int n) {
int[] mcost = new int[n + 1];
mcost[1] = 1;
mcost[2] = 2;
if(n <= 2)
return mcost[n];
for(int i = 3; i <= n;i++)
mcost[i] = mcost[i-1] + mcost[i-2];
return mcost[n];
}