中值滤波(python实现)

版本opencv-python (4.4.0.46)

第一步:rgb图像转为灰度图像

import cv2
import numpy as np

image = cv2.imread("E:/code/python/medfilter/1lena.png")
width = image.shape[0]
height = image.shape[1]
grayimg = np.zeros([width,height,1],np.uint8) 
for i in range(height):
    for j in range(width):
        grayimg[i,j] = 0.299 * image[i,j][0] + 0.587 * image[i,j][1] +  0.114 * image[i,j][2]
cv2.imshow('srcImage', image)           
cv2.imshow('grayImage', grayimg)
cv2.imwrite("E:/code/python/medfilter/2graylena.png", grayimg)
cv2.waitKey(0)

#gray=R*0.299+G*0.587+B*0.114  Gray = (R*306 + G*601 + B*117) >> 10

在这里插入图片描述 在这里插入图片描述

第二步:添加椒盐噪声

<
### 中值滤波 Python 实现 中值滤波通过将图像中某个像素点的值替换为该点邻域内所有像素值的中位数来减少噪声[^2]。以下是使用 `numpy` 和 `scipy.ndimage` 的简单实现: ```python import numpy as np from scipy import ndimage import cv2 def median_filter(image, kernel_size): """应用中值滤波""" return ndimage.median_filter(image, size=kernel_size) # 读取图像 image = cv2.imread('noisy_image.jpg', 0) # 应用中值滤波 filtered_image = median_filter(image, 3) # 显示原图和滤波后的图像 cv2.imshow('Original Image', image) cv2.imshow('Filtered Image', filtered_image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 此代码片段展示了如何利用现有的科学计算库快速实现中值滤波功能。 对于更详细的自定义实现,考虑如下手动编写的版本: ```python import cv2 import numpy as np def Median_filter(img, k): """ 手动实现中值滤波 参数: img (ndarray): 输入图像. k (int): 滤波器尺寸. 返回: ndarray: 进行过中值滤波处理后的图像. """ h, w, c = img.shape pad = k // 2 out = np.zeros((h + 2 * pad, w + 2 * pad, c)) out[pad:pad + h, pad:pad + w] = img.copy() tmp = out.copy() for y in range(h): for x in range(w): for ci in range(c): out[pad + y, pad + x, ci] = np.median(tmp[y:y + k, x:x + k, ci]) out = out[pad:pad + h, pad:pad + w] return out img = cv2.imread("input_image_path") out = Median_filter(img, 5) cv2.imwrite("output_image_path", out) ``` 这段代码不仅实现了基本的功能,还允许用户调整参数以适应不同的应用场景[^5]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值