POJ1088 滑雪

DP+dfs
dp[i][j]:表示从坐标i,j为起始点的最长下降路径。搜索每一条路径取最值。


#include <iostream>
#include <cstdlib>
#include <string>
#include <algorithm>
using namespace std;

int map[150][150];
int R, C;
int dp[150][150];

int dfs(int i, int j) {
    if(dp[i][j] != 0)
       return dp[i][j];
    int max = 1;
    if(i-1 >0 && map[i][j] >map[i-1][j]) {
       int len = dfs(i-1, j) + 1;
       if(len > max)
           max =len;
    }
    if(j-1 >0 && map[i][j] >map[i][j-1]) {
       int len = dfs(i, j-1) + 1;
       if(len > max)
           max =len;
    }
    if(i+1 <=R && map[i][j] >map[i+1][j]) {
       int len = dfs(i+1, j) + 1;
       if(len > max)
           max =len;
    }
    if(j+1 <=C && map[i][j] >map[i][j+1]) {
       int len = dfs(i, j+1) + 1;
       if(len > max)
           max =len;
    }
    return dp[i][j] =max;
}
int main() {
    cin>> R >>C;
    for(int i = 1; i<= R; i++) {
       for(int j = 1; j <= C; j++){
           cin>> map[i][j];
       }
    }
    int max = 0;
    memset(dp, 0,sizeof(dp));
    for(int i = 1; i<= R; i++) {
       for(int j = 1; j <= C; j++){
           dp[i][j] =dfs(i, j);
           if(max< dp[i][j]) {
              max = dp[i][j];
           }
       }
    }
    cout<< max<< endl;
    //system("pause");
    return 0;
}


题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值