11张图读懂可口可乐供应链的管理精髓

本文介绍了可口可乐的供应链管理模式,包括DOIP(需求、运营和库存计划管理)的核心优势及其独特的需求预测方式。文章还详细阐述了可口可乐如何通过101销售模式简化销售渠道并提高市场竞争力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



导语:

可口可乐传承了118年,至今其仍是世界饮料业的巨头,是什么让它雄踞碳酸饮料行业之首?可口可乐有什么秘密竞争性武器呢?

来自可口可乐全球供应链总监分享的可口可乐供应链计划、运营、库存管理等供应链管理的核心内容,供大家学习与参考。

【可口可乐供应链主要成员】

主要有三个参与者:

1、 浓缩液厂

2、 装瓶厂

3、 分销商

包装物供应商和甜味剂生产公司是这个行业的主要供应商。


什么是DOIP?

DOIP是需求(Demand)、运营(Operations)和库存计划管理(Inventory Planning)的简称,是可口可乐创新的供应链管理模式,比起传统的SOP模式更具灵活性,它的优势主要体现在4个方面:

Ÿ   通过优质服务提升产量

Ÿ   预测当前以及未来的销售量

Ÿ   明确辅助性促销和潜在销售量

Ÿ   通过平衡供求规模减少运营成本


 

可口可乐独特的需求预测方式:DOIP=需求+运营+库存计划管理



【市场需求与库存、产能的协同流程】




【月计划、周计划的精细化协同】




对每个人来说,效率和可见度都具有重要的价值,无论你从月计划执行到周计划,还是从日计划执行到小时计划,这也是DOIP的精神之一。

 

【8级需求预测模式】


【生产管理运营流程】


可口可乐最具代表性的运作模式:101销售模式,将一部分批发商定义为101客户,省略二级批发商环节,直接面对零售终端。(所谓“101”,即“1”——一体结盟(将批发商看作可口可乐的一部分),“0”——零售目标,“1”——一瓶在手,欢乐无穷。)

可口可乐公司通过供应链把生产成本合理精明地转嫁给了浓缩液制造商、装瓶商、经销商、零售商和消费者,和好地利用了各方资源,抢占了市场的先机。

 

可口可乐通过严格的供应链管理制度和服务规范,执行对装瓶商、经销商、零售商各个环节的服务和监控,通过定期审查各经销商和零售商,收集有关产品信息,并根据审查的结果和反馈的情况,指导经销商、零售商的经营服务,实现合作竞争的优势。

### Flink Exactly-Once Semantics Explained In the context of stream processing, ensuring that each record is processed only once (exactly-once) without any loss or duplication becomes critical for applications requiring high accuracy and reliability. For this purpose, Apache Flink implements sophisticated mechanisms to guarantee exactly-once delivery semantics. #### Importance of Exactly-Once Processing Exactly-once processing ensures every message is consumed precisely one time by downstream systems, preventing both data loss and duplicate records[^3]. This level of assurance is particularly important when dealing with financial transactions, billing information, or other scenarios where even a single error can lead to significant issues. #### Implementation Mechanisms To achieve exactly-once guarantees, Flink employs several key technologies: 1. **Checkpointing**: Periodic snapshots are taken across all operators within a job graph at consistent points in time. These checkpoints serve as recovery states which allow jobs to resume from these saved positions upon failure. 2. **Two-phase commit protocol**: When interacting with external systems like databases or messaging queues through sinks, Flink uses an extended version of the two-phase commit transaction mechanism. During checkpoint creation, pre-commit actions prepare changes; after successful completion of the checkpoint process, global commits finalize those operations[^4]. ```mermaid graph LR; A[Start Transaction] --> B{Prepare Changes}; B --> C(Pre-Commit); C --> D{All Pre-commits Succeed?}; D -->|Yes| E(Global Commit); D -->|No| F(Abort); ``` This diagram illustrates how the two-phase commit works during sink operations. Each operator prepares its part before confirming globally whether everything has been successfully prepared. Only then does it proceed with committing or aborting based on consensus among participants. #### Barrier Insertion & Propagation For maintaining consistency between different parts of computation while taking periodic snapshots, barriers play a crucial role. They act as synchronization markers inserted into streams periodically according to configured intervals. As they propagate along with events throughout the topology, they ensure that no new elements enter until previous ones have completed their respective stages up till the barrier point. ```mermaid sequenceDiagram participant Source participant OperatorA participant OperatorB Note over Source: Time advances... Source->>OperatorA: Data Element 1 Source->>OperatorA: Checkpoint Barrier X Source->>OperatorA: Data Element 2 OperatorA->>OperatorB: Forwarded Elements + Barrier X Note right of OperatorB: Process pending items\nbefore handling next element post-barrier ``` The sequence above shows how barriers travel alongside regular data flow but enforce order so that computations remain synchronized despite asynchronous nature inherent in distributed environments. --related questions-- 1. What challenges arise when implementing exactly-once semantics in real-world applications? 2. How do checkpointing frequencies impact performance versus fault tolerance trade-offs? 3. Can you explain what happens if some nodes fail midway through a two-phase commit operation? 4. Are there alternative methods besides using barriers for achieving similar levels of consistency? 5. In practice, under what circumstances might at-least-once be preferred over exactly-once semantics?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值