- 博客(2)
- 收藏
- 关注
原创 【梯度算法学习笔记】
式中,∂J(w)/∂w 为求w点出的斜率,当如图所示,∂J(w)/∂w>0,又因为α始终>0,则w=w-∂J(w)/∂w,w的值向左移动,当给α赋值时,w被不断更新,不断向左移动,直到找到w最小值。当w取值对称轴左边时,同理。讲解的极为详细,我学习了该大佬的讲解,记录一下我对梯度下降算法的简单理解。主要解释为什么是θ 减去损失函数对θ 的偏导。一开始被梯度下降算法的表达形式困扰了挺久,因此记录下来,弥补自己绕不过弯的愚蠢。式中,J(θ)为损失函数;关于损失函数的介绍,
2023-06-10 11:09:25 96
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人