互质数

若两个数互质,证明它们的和与它们的积互质

证明:设这两个数为p ,q
M=p+q N=pq
假设M,N不互质,则有:M=aN或 N=aM (a>1且a为自然数)
当M=aN时,
p+q=apq
p= q(ap-1)
p/q=ap-1
因为p,q互质,所以p/q为1或非整数
当p/q=1时,ap=2(不符)
当p/q为非整 数时 ,ap-1为整 数 ,矛盾即M不等于aN
同理可证N不等于aM
所以 M,N互质
两个互质数的和(或差)与原来的数仍然是互质数.

M和N互质,则M+N和M或N也互质。

反证法:若M+N和M不互质,则有公约数K,且存在正整数P,Q,使M+N=PK,M=QK。
所以N=(M+N)-M=PK-QK=(P-Q)K,说明K是M和N的公约数,这与题意条件【M和N互质】矛盾。
于是可以得到结论【M+N和M或N也互质】。
参考
https://www.zybang.com/question/ecee283945ca2711d16ee014981cc1fe.html
https://iask.sina.com.cn/b/17892430.html

### Java 实现互质数的计算方法 #### 方法概述 两个整数 \(a\) 和 \(b\) 是互质的,当且仅当它们的最大公约数(GCD)为 1。因此,在 Java 中可以通过欧几里得算法来高效地解最大公约数,并判断两数是否互质。 以下是基于此逻辑的具体实现: ```java public class CoprimeChecker { // 使用欧几里得算法计算最大公约数 public static int gcd(int a, int b) { while (b != 0) { int temp = b; b = a % b; a = temp; } return Math.abs(a); } // 判断两个数是否互质 public static boolean areCoprime(int num1, int num2) { return gcd(num1, num2) == 1; } public static void main(String[] args) { // 测试数据 int number1 = 14; int number2 = 15; if (areCoprime(number1, number2)) { System.out.println(number1 + " 和 " + number2 + " 是互质数"); } else { System.out.println(number1 + " 和 " + number2 + " 不是互质数"); } } } ``` #### 关键点解析 1. **欧几里得算法**用于计算两个整数的最大公约数。其核心原理在于 \(\text{gcd}(a, b) = \text{gcd}(b, a \% b)\),直到余数为零为止[^1]。 2. 如果返回的最大公约数为 1,则说明输入的两个互质;否则不互质。 3. 上述代码中的 `Math.abs` 函数确保即使输入负数也能正确处理。 --- #### 扩展到多个数的情况 如果需要判断一组数是否全部互质,可以扩展上述逻辑如下所示: ```java import java.util.Arrays; public class MultipleCoprimeChecker { // 计算数组中所有数的最大公约数 public static int gcdOfArray(int[] numbers) { int result = numbers[0]; for (int i = 1; i < numbers.length; i++) { result = gcd(result, numbers[i]); if (result == 1) break; // 提前终止优化性能 } return result; } // 辅助函数:计算两个数的最大公约数 private static int gcd(int a, int b) { while (b != 0) { int temp = b; b = a % b; a = temp; } return Math.abs(a); } // 判断数组中的所有数是否互质 public static boolean areAllCoprime(int[] numbers) { return gcdOfArray(numbers) == 1; } public static void main(String[] args) { int[] array = {3, 5, 7}; if (areAllCoprime(array)) { System.out.println(Arrays.toString(array) + " 的所有元素都是互质数"); } else { System.out.println(Arrays.toString(array) + " 的所有元素不是完全互质"); } } } ``` --- #### 注意事项 - 当涉及大范围数值时,需注意溢出风险以及效率问题。 - 对于更复杂的场景,可能还需要引入其他库支持,例如 OpenSSL 库提供了加密级别的操作功能[^4],但这通常与纯数学运算无关。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值