HDU 4082 Hou Yi's secret(相似三角形最大数量)(模拟加精度)

博客给出题目地址,要求根据若干个点求相似三角形最大数量,因点最多18个可采用暴力解法。同时指出WA点,一是点有重复需判重,二是开方会损失精度,提醒计算几何题尽量少开方。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4082
给你若干个点,求相似三角形最大数量。点最多只有18个,可以尽情暴力。
WA点在于:

  1. 点有重复,需要判重。
  2. 开方(sqrt)损失了精度。

敲黑板 谨记谨记:以后计算几何的题尽量少开方!!!

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<math.h>
using namespace std;
int num[3000];
int cnt;
struct  point
{
    double x,y;
}m[20];
struct  hh
{
    double x1,x2,x3;
}m1[8000],m2;

bool dengyu(struct hh k1,struct hh k2)
{
    if((k1.x1*k2.x2==k1.x2*k2.x1)&&(k1.x1*k2.x3==k1.x3*k2.x1)&&(k1.x2*k2.x3==k1.x3*k2.x2))
        return true;
    return false;
}
void sort1(double &n1,double &n2,double &n3)///从小到大排序
{
    double n4;
    if(n1>n2)
    {n4=n1;
        n1=n2;     n2=n4;
    }if(n1>n3)
    {
        n4=n1;n1=n3;n3=n4;
    }if(n2>n3)
    {
        n4=n2;n2=n3;n3=n4;
    }
}
void jiao(struct point A,struct point B,struct point C)
{
    double a,b,c;
    a=((B.x-C.x)*(B.x-C.x)+(B.y-C.y)*(B.y-C.y));
    b=((A.x-C.x)*(A.x-C.x)+(A.y-C.y)*(A.y-C.y));
    c=((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));
    sort1(a,b,c);
    m1[cnt].x1=a;   m1[cnt].x2=b; m1[cnt].x3=c;
    cnt++;
}
int main()
{
    int nn,t1,t2,n;
    while(scanf("%d",&nn)!=EOF)
    {
        if(nn==0)
            break;
            cnt=0;
        bool  vis[205][205];
        memset(vis,0,sizeof vis);
        n=0;
        for(int i = 0; i <nn; i++)
        {
            scanf("%d%d",&t1,&t2);
            if(!vis[t1+100][t2+100])
            {
                m[n].x = double(t1);
                 m[n].y = double(t2);
                 n++;
                vis[t1+100][t2+100]= true;
            }
        }
        for(int i=0;i<n-2;i++)
        {
            for(int j=i+1;j<n-1;j++)
            {
                for(int k=j+1;k<n;k++)
                {
                   if((m[i].x-m[j].x)/(m[i].y-m[j].y)==(m[i].x-m[k].x)/(m[i].y-m[k].y));
                   else
                    jiao(m[i],m[j],m[k]);

                }
            }
        }
    if(cnt==0)
        {
            printf("0\n");
            continue;
        }
       //sort(m1,m1+cnt,cmp);
       m2=m1[0];
       int ans,maxn;
      // printf("%d**\n",cnt);
       maxn=0;
      ans=1;
        ///int i=1;
      memset(num, 0, sizeof(num));
         for(int i = 0; i < cnt; i ++)
         {
              for(int j = 0; j < cnt; j ++)
              {
                     if(dengyu(m1[i],m1[j]))
                         num[i] ++;
              }
         }
          for(int i = 0; i< cnt; i ++)
         {
              if(maxn< num[i])
                  maxn= num[i];
         }
       printf("%d\n",maxn);
    }
    return 0;
}

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值