Scout YYF I POJ - 3744(概率+矩阵快速幂)

题目地址:http://poj.org/problem?id=3744
题意:路上有N个雷(踩雷之后你会牺牲),初始时你在第一单元,每次可以走一个单元或者两个,概率分别为p,1-p;路长最大为100000000,求你安全通过的概率。
思路:
第一步:
设dp[i]是安全通过第i单元的概率,那么初识时ddp[0]=0, p[1]=1,递推关系为:dp[i]=p * dp[i-1]+(i-p) * dp[i-2].当i位置有雷时,让dp[i]=0.
第二步:
完成第一步,我们会发现路长最大为100000000,for循环会超时,而N最大只有10,我们可以用矩阵快速幂来优化
(1) [ d p [ i ] d p [ i − 1 ] ] = [ 1 1 1 0 ] [ d p [ i − 1 ] d p [ i − 2 ] ] \left[ \begin{matrix} dp[i] \\ dp[i-1] \end{matrix} \right] = \left[ \begin{matrix} 1 & 1\\ 1& 0 \end{matrix} \right] \left[ \begin{matrix} dp[i-1] \\ dp[i-2] \end{matrix} \right] \tag{1} [dp[i]dp[i1]]=[1110][dp[i1]dp[i2]](1)
(2) [ d p [ x 2 ] d p [ x 2 − 1 ] ] = [ 1 1 1 0 i ] [ d p [ x 1 ] d p [ x 1 − 1 ] ] \left[ \begin{matrix} dp[x2] \\ dp[x2-1] \end{matrix} \right] = \left[ \begin{matrix} 1 & 1\\ 1& 0 \end{matrix} ^i \right] \left[ \begin{matrix} dp[x1] \\ dp[x1-1] \end{matrix} \right] \tag{2} [dp[x2]dp[x21]]=[1110i][dp[x1]dp[x11]](2)
i是两个雷的距离,i=x2-x1然后让dp[x2]=0,因为x2单元上有雷,然后以x2为起点进行下一个快速幂,直到走最后一个雷Xn,那么安全概率为dp[xn-1] * (i-p)

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
using namespace std;
 double p;
struct Matrix
{
    double m[2][2];
}P,I;
Matrix matrixmul(Matrix a,Matrix b)///a *b
{
    int i,j,k;
    Matrix c;
    for(i=0;i<2;i++)
    for(j=0;j<2;j++)
    {
        c.m[i][j]=0;
        for(k=0;k<2;k++)
        c.m[i][j]+=a.m[i][k]*b.m[k][j];
    }
    return c;
}
Matrix quick(int n)
{
    Matrix m=P,b=I;
    while(n>0)
    {
        if(n&1)
         b=matrixmul(b,m);
        n=n>>1;
        m=matrixmul(m,m);
    }
    return b;
}
void init()
{
     for(int i=0;i<2;i++)
     for(int j=0;j<2;j++)
      I.m[i][j]=0;
    I.m[0][0]=I.m[1][1]=1;
    P.m[0][0]=p; P.m[0][1]=1-p;
    P.m[1][0]=1;P.m[1][1]=0;
}
int a[12];
int main()
{
   int n;
   Matrix ans,ans1;
    while(scanf("%d",&n)!=EOF)
    {
        scanf("%lf",&p);
        init();
        for(int i=0;i<n;i++)
        scanf("%d",&a[i]);
        sort(a,a+n);
        int x;
        for(int i=0;i<n;i++)
        {
            if(i==0)
              x=a[i]-1;
            else
            x=a[i]-a[i-1];
             ans=quick(x);
             if(i==0)
             {
                 ans1.m[0][0]=1; ans1.m[0][1]=0;ans1.m[1][0]=0;ans1.m[1][1]=0;
             }
             else
             {
                 ans1.m[0][0]=0;
             }
             ans1=matrixmul(ans,ans1);
        }
        double sum=ans1.m[1][0]*(1-p);
        printf("%.7lf\n",sum);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值