题目地址:http://poj.org/problem?id=3744
题意:路上有N个雷(踩雷之后你会牺牲),初始时你在第一单元,每次可以走一个单元或者两个,概率分别为p,1-p;路长最大为100000000,求你安全通过的概率。
思路:
第一步:
设dp[i]是安全通过第i单元的概率,那么初识时ddp[0]=0, p[1]=1,递推关系为:dp[i]=p * dp[i-1]+(i-p) * dp[i-2].当i位置有雷时,让dp[i]=0.
第二步:
完成第一步,我们会发现路长最大为100000000,for循环会超时,而N最大只有10,我们可以用矩阵快速幂来优化
(1)
[
d
p
[
i
]
d
p
[
i
−
1
]
]
=
[
1
1
1
0
]
[
d
p
[
i
−
1
]
d
p
[
i
−
2
]
]
\left[ \begin{matrix} dp[i] \\ dp[i-1] \end{matrix} \right] = \left[ \begin{matrix} 1 & 1\\ 1& 0 \end{matrix} \right] \left[ \begin{matrix} dp[i-1] \\ dp[i-2] \end{matrix} \right] \tag{1}
[dp[i]dp[i−1]]=[1110][dp[i−1]dp[i−2]](1)
(2)
[
d
p
[
x
2
]
d
p
[
x
2
−
1
]
]
=
[
1
1
1
0
i
]
[
d
p
[
x
1
]
d
p
[
x
1
−
1
]
]
\left[ \begin{matrix} dp[x2] \\ dp[x2-1] \end{matrix} \right] = \left[ \begin{matrix} 1 & 1\\ 1& 0 \end{matrix} ^i \right] \left[ \begin{matrix} dp[x1] \\ dp[x1-1] \end{matrix} \right] \tag{2}
[dp[x2]dp[x2−1]]=[1110i][dp[x1]dp[x1−1]](2)
i是两个雷的距离,i=x2-x1,然后让dp[x2]=0,因为x2单元上有雷,然后以x2为起点进行下一个快速幂,直到走最后一个雷Xn,那么安全概率为dp[xn-1] * (i-p)
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
using namespace std;
double p;
struct Matrix
{
double m[2][2];
}P,I;
Matrix matrixmul(Matrix a,Matrix b)///a *b
{
int i,j,k;
Matrix c;
for(i=0;i<2;i++)
for(j=0;j<2;j++)
{
c.m[i][j]=0;
for(k=0;k<2;k++)
c.m[i][j]+=a.m[i][k]*b.m[k][j];
}
return c;
}
Matrix quick(int n)
{
Matrix m=P,b=I;
while(n>0)
{
if(n&1)
b=matrixmul(b,m);
n=n>>1;
m=matrixmul(m,m);
}
return b;
}
void init()
{
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
I.m[i][j]=0;
I.m[0][0]=I.m[1][1]=1;
P.m[0][0]=p; P.m[0][1]=1-p;
P.m[1][0]=1;P.m[1][1]=0;
}
int a[12];
int main()
{
int n;
Matrix ans,ans1;
while(scanf("%d",&n)!=EOF)
{
scanf("%lf",&p);
init();
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
sort(a,a+n);
int x;
for(int i=0;i<n;i++)
{
if(i==0)
x=a[i]-1;
else
x=a[i]-a[i-1];
ans=quick(x);
if(i==0)
{
ans1.m[0][0]=1; ans1.m[0][1]=0;ans1.m[1][0]=0;ans1.m[1][1]=0;
}
else
{
ans1.m[0][0]=0;
}
ans1=matrixmul(ans,ans1);
}
double sum=ans1.m[1][0]*(1-p);
printf("%.7lf\n",sum);
}
return 0;
}