克鲁斯卡尔算法(Kruskal)

克鲁斯卡尔算法(Kruskal)

1.应用场景-公交站问题

看一个应用场景和问题:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-W5J2g2PB-1595757358466)(en-resource://database/1015:0)]

(1)某城市新增7个站点(A, B, C, D, E, F, G) ,现在需要修路把7个站点连通
(2)各个站点的距离用边线表示(权) ,比如 A – B 距离 12公里
(3)问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?

2.克鲁斯卡尔算法介绍

(1)克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
(2)基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路
(3)具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止

3.克鲁斯卡尔算法图解说明

来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EyfhpF2a-1595757358468)(en-resource://database/1017:0)]

第1步:将边<E,F>加入R中。 边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
第2步:将边<C,D>加入R中。 上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
第3步:将边<D,E>加入R中。 上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
第4步:将边<B,F>加入R中。 上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
第5步:将边<E,G>加入R中。 上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
第6步:将边<A,B>加入R中。 上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。
此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。

  • 克鲁斯卡尔算法分析
    根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题: 问题一 对图的所有边按照权值大小进行排序。 问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。
    问题一:很好解决,采用排序算法进行排序即可。
    问题二:处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。

  • 如何判断是否构成回路
    举例说明(如图)
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sxZYSG6Q-1595757358470)(en-resource://database/1019:0)]

在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:
(01) C的终点是F。
(02) D的终点是F。
(03) E的终点是F。
(04) F的终点是F。

  • 关于终点的说明:
    就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点”
    因此,接下来,虽然<C,E>是权值最小的边。但是C和E的终点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,我们加入的边的两个顶点不能都指向同一个终点,否则将构成回路。【后面有代码说明】

  • 代码:


public class KruskalCase {

    private int edgNum; //边的个数
    private char[] vertexs; //顶点数组
    private int[][] martix; //邻接矩阵
    //使用INF 表示两个顶点不能连通
    private static final int INF = Integer.MAX_VALUE;

    public static void main(String[] args) {
        char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        //克鲁斯卡尔算法的邻接矩阵
        int matrix[][] = {
                        /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
                /*A*/ {   0,  12, INF, INF, INF,  16,  14},
                /*B*/ {  12,   0,  10, INF, INF,   7, INF},
                /*C*/ { INF,  10,   0,   3,   5,   6, INF},
                /*D*/ { INF, INF,   3,   0,   4, INF, INF},
                /*E*/ { INF, INF,   5,   4,   0,   2,   8},
                /*F*/ {  16,   7,   6, INF,   2,   0,   9},
                /*G*/ {  14, INF, INF, INF,   8,   9,   0}};

        //创建KruskalCase 对象实例
        KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
        //输出构建的
        kruskalCase.showMartix();

        /*EData[] edges = kruskalCase.getEdges();
        System.out.println("未排序:" + Arrays.toString(edges));
        kruskalCase.sortEdges(edges);
        System.out.println("已排序:" + Arrays.toString(edges));*/

        kruskalCase.kruskal();

    }

    //构造器
    public KruskalCase(char[] vertexs, int[][] martix){
        //初始化结点的个数
        int vlen = vertexs.length;

        //初始化顶点,复制的方式
        this.vertexs = new char[vlen];
        for (int i = 0; i < vlen; i++) {
            this.vertexs[i] = vertexs[i];
        }

        //初始化边
        this.martix = new int[vlen][vlen];
        for (int i = 0; i < vlen; i++) {
            for (int j = 0; j < vlen; j++) {
                this.martix[i][j] = martix[i][j];
            }
        }

        //统计边数
        for (int i = 0; i < vlen; i++) {
            for (int j = i + 1; j < vlen; j++) {
                if(martix[i][j] != INF){
                    edgNum ++;
                }
            }
        }
    }

    public void kruskal(){
        //用于保存"已有最小生成树"中每个顶点在最小生成树中的终点
        //如果一条边没有加入最小生成树则它的两个顶点的终点就是自身,用0表示
        int ends[] = new int[edgNum];

        //结果数组的索引,用于将某条符合条件的边加入结果数组
        int index = 0;
        EData[] res = new EData[edgNum];

        //获取图中所有的边
        EData[] edges = getEdges(); //共12条边

        //将所有的边按照权值从小到大进行排序
        sortEdges(edges);

        //遍历edges数组,将符合条件的边添加到最小生成树中,如果准备加入的边没有形成回路则加入最小生成树,否则判断下一条边
        for (int i = 0; i < edgNum; i++) {
            //得到第i条边的顶点
            int p1 = getPosition(edges[i].start); //该边的起点
            int p2 = getPosition(edges[i].end); //该边的终点

            //获取p1 和p2 在已有最小生成树中的终点
            int m = getEnd(ends, p1);
            int n = getEnd(ends, p2);

            //判断是否构成回路
            if(m != n){ //没有构成回路
                ends[m] = n; //设置m在最小生成树中的终点
                res[index++] = edges[i];//将该没有构成回路的边加入res中
            }

        }
        System.out.println("最小生成树为:");
        //<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
        for (int i = 0; i < index; i++) {
            System.out.println(res[i]);
        }
    }

    //打印邻接矩阵
    public void showMartix(){
        for (int i = 0; i < vertexs.length; i++) {
            for (int j = 0; j < vertexs.length; j++) {
                System.out.printf("%-12d", martix[i][j]);
            }
            System.out.println();
        }
    }

    /**
     * 对边进行排序(冒泡排序)
     * @param edges 边的集合
     */
    public void sortEdges(EData[] edges){
        for (int i = 0; i < edges.length - 1; i++) {
            for (int j = 0; j < edges.length - i - 1; j++) {
                if(edges[j].weight > edges[j + 1].weight){
                    EData temp = edges[j];
                    edges[j] = edges[j + 1];
                    edges[j + 1] = temp;
                }
            }
        }
    }

    /**
     * 获取ch对应的下标 
     * @param ch
     * @return
     */
    public int getPosition(char ch){
        for (int i = 0; i < vertexs.length; i++) {
            if(vertexs[i] == ch){ //找到了
                return  i;
            }
        }
        //没有找到
        return -1;
    }

    //获取图中的所有边
    public EData[] getEdges(){
        int index = 0;
        EData[] edges = new EData[edgNum];
        for (int i = 0; i < vertexs.length; i++) {
            for (int j = i + 1; j < vertexs.length; j++) {
                if(martix[i][j] != INF){
                    edges[index++] = new EData(vertexs[i], vertexs[j], martix[i][j]);
                }
            }
        }
        return edges;
    }

    /**
     * 获取下标为i顶点的终点,用于后面判断两个顶点的终点是否相同,最开始的是够ends[]都为0,则结点的中点就是本身
     * @param ends 记录了各个顶点对应的终点是哪个,这个是在遍历过程中动态生成的
     * @param i 顶点对应的下标
     * @return 下标为i的顶点对应的终点的下标
     */
    public int getEnd(int ends[], int i){
        //下面这个while循环,很重要
        // 在本例中第三步,最小生成树中加入了<D,E>这条边,但是顶点C对应的终点还是D
        // 在第四步加入<B,F>之前,会判断<C,E>这条边能否加入该最小生成树(不能加入,因为会构成回路),
        // 该循环就能够让在判断<C,E>能否加入最小生成树时让顶点C对应的终点变为F,不懂在DEBUG下
        while (ends[i] != 0){
            i = ends[i];
        }
        return i;
    }

}

//创建一个类EData,用于表示一条边(包括两个顶点和一个权值)
class  EData{
    char start; //一天边的起始点
    char end; //一条边的终点
    int weight; // 该条边的权值

    public EData(char start, char end, int weight) {
        this.start = start;
        this.end = end;
        this.weight = weight;
    }

    @Override
    public String toString() {
       return "EData [<" + start + ", " + end + ">= " + weight + "]";
    }
}
  • 结果:
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HOeZV9h9-1595757358475)(en-resource://database/1021:0)]
  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
普里姆(Prim)算法和克尔(Kruskal)算法都是用于解决最小生成树问题的算法。 最小生成树问题是指在一个无向连通图中,找到一棵生成树,使得树上所有边的权值之和最小。生成树是指一个无向图的生成子图,它是一棵树,且包含图中所有顶点。 下面我们分别介绍普里姆算法和克算法: 1. 普里姆算法 普里姆算法是一种贪心算法,它从一个任意点开始,逐步扩展生成树,每次选择当前生成树到未加入的点中距离最近的点,并将其加入生成树。 具体实现步骤如下: - 随机选择一个起始点,将其加入生成树。 - 在生成树中的所有节点中,找到到未加入生成树的节点中距离最小的节点,将其加入生成树。 - 重复以上步骤,直到生成树包含了所有节点。 2. 克算法算法也是一种贪心算法,它从边集合中选择边,逐步扩展生成树,每次选择当前边集合中权值最小的边,并将其加入生成树。 具体实现步骤如下: - 将所有边按照权值从小到大排序。 - 从权值最小的边开始,逐个加入生成树,如果加入当前边会形成环,则不加入该边。 - 重复以上步骤,直到生成树包含了所有节点。 两种算法的时间复杂度都是O(ElogE),其中E为边数。普里姆算法在处理稠密图时效率更高,而克算法在处理稀疏图时效率更高。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值