测量学
lesson 6:
小地区控制测量
为了限制误差的累积和传播,保证测图和施工的精度及速度,测量工作必须遵循布局上“由总体到局部”,次序上“先控制后碎部”的基本原则。
先建立控制网,在控制网的基础上再进行碎部测量和施工放样。
控制测量:为建立控制网进行的测量(实质就是测量控制点的平面位置和高程)。
目的:为测图或工程建设的测区建立统一的平面和高程控制网。
- 平面控制测量
- 高程控制测量
平面控制测量:
平面控制测量的常用方法有:
-
导线测量
一、二、三、四等;一、二、三级;图根导线测量。
-
三角测量
一、二、三、四等;一、二级;图根导线测量。
-
交会测量
-
GPS测量
A、B、C、D、E级。
国家平面控制测量按施测精度可以划分为一、二、三、四等四个等级的三角测量和精密导线测量。
城市平面控制测量采用二、三、四等三角测量及一、二级小三角测量或一、二、三级导线测量。
直接供地形测图使用的控制点称为图根控制点。测定图根点位的工作称为图根测量。
图根点可在国家平面控制点及城市平面控制点的基础上,采用三角测量或导线测量的方法加密获得。
高程控制测量:
国家水准测量分为一、二、三、四等。一等是骨干,二等是基础,三四等用于加密。
目前随着电磁波测距的使用,三角高程测量可以在非平坦地面代替三、四等水准测量。
三角测量的两差改正:
球差改正: f 1 = S 2 / 2 R f_1 = S^2 / 2R f1=S2/2R,式中R是地球平均曲率半径,一般取6371km。
球差改正: f 2 = − S 2 / 2 R ′ f_2 = -S^2 / 2R' f2=−S2/2R′式中,R’ 为大气折光使视线形成的曲率半径。
导线测量
导线错误的检查(一个角度测过,一个边长测错)
- 图解法
- 解析法
三角测量
观测所有三角形的内角,并测量1~2条边的边长,用正弦定理计算出其余三角形的边长,根据起始边的方位角、起算点的坐标,推算各待定点的坐标。(测角工作量大,适用于不便于量距的山区和丘陵地区)
外业工作:
- 踏勘选点
- 建立标志
- 角度观测(全圆观测法测量水平角,测角中误差按费列罗公式计算 m = ± [ w w ] 3 n m = \pm \sqrt {\frac{[ww]}{3n}} m=±3n[ww])
图根三角测量水平角观测技术要求
级别 | 测角中误差 | 测回数(DJ6) | 半测回归零差 | 三角形最大闭合差 |
---|---|---|---|---|
图根三角 | ± 20’' | 1 | 24’’ | ±60’’ |
内业计算:
-
测有两个连接角的三角网(每个三角形内角和应等于180°,方位角类似附合导线,所以有两次角度改正。设定一个假定边长,推算假定终点坐标,与实际坐标比较算出伸缩系数,改正边长,进而求出坐标)
-
测有一个连接角的三角网(没有方位角条件,不进行第二次角度改正)
-
无定向三角网
-
中点多边形(三角形内角和等于180°,圆周角等于360°,边长条件)
交会测量
前方交会法
在进行地形测绘时,有时图根点密度不足,可以考虑前方交会加密控制点。
设已知点A、B的坐标分别为
(
X
A
,
Y
A
)
(X_A,Y_A)
(XA,YA)和
(
X
B
,
Y
B
)
(X_B,Y_B)
(XB,YB),在两已知点上分别观测了水平角
α
、
β
\alpha、\beta
α、β,则待定点P的坐标为:
X P = X A c o t β + X B c o t α + Y B − Y A c o t α + c o t β X_P = \frac{X_A cot \beta + X_B cot \alpha + Y_B -Y_A}{cot \alpha + cot \beta} XP=cotα+cotβXAcotβ+XBcotα+YB−YA
Y P = Y A c o t β + Y B c o t α + X A − X B ) c o t α + c o t β Y_P = \frac{Y_A cot \beta + Y_B cot \alpha + X_A -X_B)}{cot \alpha + cot \beta} YP=cotα+cotβYAcotβ+YBcotα+XA−XB)

X P = X A + S A P c o s α A P X_P = X_A + S_{AP}cos \alpha_{AP} XP=XA+SAPcosαAP
S A P s i n γ = S A B s i n β S_{AP} sin \gamma = S_{AB} sin \beta SAPsinγ=SABsinβ
α A P = α A B − α \alpha_{AP} = \alpha_{AB} - \alpha αAP=αAB−α
所以: S A P c o s α A P = S A B s i n β s i n γ × c o s ( α A B − α ) S_{AP}cos \alpha_{AP} = \frac{S_{AB} sin \beta}{sin \gamma} \times cos(\alpha_{AB} - \alpha) SAPcosαAP=sinγSABsinβ×cos(αAB−α)
根据三角函数的性质有:
s i n γ = s i n ( 180 ° − α − β ) = s i n ( α + β ) sin \gamma = sin(180° - \alpha - \beta) = sin(\alpha + \beta) sinγ=sin(180°−α−β)=sin(α+β)
根据两角和差公式:
c o s ( α A B − α ) = c o s α A B c o s α + s i n α A B s i n α cos(\alpha_{AB} - \alpha) = cos \alpha_{AB} cos \alpha + sin \alpha_{AB} sin \alpha cos(αAB−α)=cosαABcosα+sinαABsinα
$sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta $
所以: S A P c o s α A P = S A B s i n β s i n α c o s β + c o s α s i n β ( c o s α A B c o s α + s i n α A B s i n α ) S_{AP}cos \alpha_{AP} = \frac{S_{AB} sin \beta}{sin \alpha cos \beta + cos \alpha sin \beta} (cos \alpha_{AB} cos \alpha + sin \alpha_{AB} sin \alpha) SAPcosαAP=sinαcosβ+cosαsinβSABsinβ(cosαABcosα+sinαABsinα)
分子分母同除以 s i n α c o s β sin \alpha cos \beta sinαcosβ:
S A P c o s α A P = S A B c o t α A B c o t α + S A B s i n α A B c o t α + c o t β = Δ x A B c o t α + Δ y A B c o t α + c o t β = ( X B − X A ) c o t α + ( Y B − Y A ) c o t α + c o t β S_{AP}cos \alpha_{AP} = \frac{S_{AB} cot \alpha_{AB} cot \alpha + S_{AB} sin \alpha_{AB}}{cot \alpha + cot \beta} = \frac{\Delta x_{AB} cot \alpha + \Delta y_{AB}}{cot \alpha + cot \beta} = \frac{(X_B - X_A) cot \alpha + (Y_B -Y_A)}{cot \alpha + cot \beta} SAPcosαAP=cotα+cotβSABcotαABcotα+SABsinαAB=cotα+cotβΔxABcotα+ΔyAB=cotα+cotβ(XB−XA)cotα+(YB−YA)
所以有: X P = X A + ( X B − X A ) c o t α + ( Y B − Y A ) c o t α + c o t β = X A c o t β + X B c o t α + ( Y B − Y A ) c o t α + c o t β X_P = X_A + \frac{(X_B - X_A) cot \alpha + (Y_B -Y_A)}{cot \alpha + cot \beta} = \frac{X_A cot \beta + X_B cot \alpha + (Y_B -Y_A)}{cot \alpha + cot \beta} XP=XA+cotα+cotβ(XB−XA)cotα+(YB−YA)=cotα+cotβXAcotβ+XBcotα+(YB−YA)
同理可求出 Y p Y_p Yp。
例题:在实际测量中,为了提高精度,一般用三个已知点进行前方交会。计算出两个P点的坐标值。两者的坐标值差值不得大于两倍比例尺精度: Δ S = δ x 2 + δ y 2 ≤ 2 × 0.1 M ( m m ) \Delta S = \sqrt{\delta_x^2 + \delta_y^2} \leq 2 \times 0.1M(mm) ΔS=δx2+δy2≤2×0.1M(mm),式中M是比例尺分母。(前方交会计算时应严格按照示例图进行编号)

侧方交会
在利用前方交会时,如果已知点不便于观测时,可以在未知点和一个已知点设站观测,求出 β = 180 ° − ( α + γ ) \beta = 180° - (\alpha + \gamma) β=180°−(α+γ),再利用前方交会的方法计算待定点坐标的方法称为侧方交会。
后方交会
如图所示,A、B、C是已知点,P点是待定点,将经纬仪安置在P点上,观测P至A、B、C各方向之间的水平夹角 α 、 β \alpha、\beta α、β,然后根据已知三角点的坐标,即可解算P点的坐标,这种方法称为后方交会法。



例题:

测边交会
测量边长交会定点。
