数据结构_散列表

散列表的查找技术

        我们学过的查找技术都是通过一系列的给定值与关键码的比较,查找效率依赖于查找过程中进行的给定值与关键码的比较次数。而散列表的查找不用比较,通过关键码直接确定存储位置。在存储位置和关键码之间建立一个确定的对应关系。
        散列表的基本思想:在记录的存储地址和他的关键码之间建立一个确定的对应关系。这样,不经过比较,一次读取就能得到所查元素的查找方法。
        散列表:采用散列技术将记录存储在一块连续的存储空间中,这块连续的存储空间称为散列表。
        散列函数:将关键码映射为散列表中适当存储位置的函数。
        散列地址:由散列函数所得的存储位置。
        例如 :一组数:12, 37, 52, 43, 84, 99
                    散列表函数为:H(k) = k%11
                    散列表:长度为11

        散列既是一种查找技术,也是一种存储技术。散列只是通过记录的关键码定位该记录,没有完整的表达记录之间的逻辑关系,所以,散列主要是面向查找的存储结构。
        散列技术的关键问题:1、散列函数的设计。如何设计一个简单、均匀、存储利用效率高的散列函数。
                                                2、冲突的处理。如何采用合适的处理冲突方法来解决冲突。
        冲突:对于两个不同的关键码Ki != Kj,有H(Ki) = H(Kj),即两个不同的记录需要存放在同一个存储位置,Ki和Kj相对于H称为同义词。
        散列函数,设计散列函数一般应遵循以下原则:
                     1、计算简单。散列函数不应该有很大的计算量,否则会降低查找效率。
                     2、函数值即散列地址分布均匀。函数值要尽量均匀散布在地址空间,这样才能保证存储空间的有效利用并减少冲突。
    (1)、散列函数-直接定址法
           散列函数是关键码的线性函数。即H(key) = a *key + b (a、b为常数)
           适用情况:事先知道关键码,关键码集合不是很大且连续性较好。
      (2)、散列函数-除留余数法
           散列函数为 : H(key) = key mod p 一般情况下,选p为小于或等于表长(最好接近表长)的最小素数。
           适用情况:不要求事先知道关键码的分布。 

      (3)、散列函数-数字分析法

            根据关键码在各个位上的分布情况,选取分布比较均匀的若干位组成散列地址。

           适用情况:能预先估计出全部关键码的每一位上各种数字出现的频度,不同的关键码集合需要重新分析。

      (4)、散列函数-平方取中法

            对关键码平方后,按照散列表大小,取中间的若干位作为散列地址(平方后截取)

           适用情况:实现不知道关键码的分布且关键码的位数不是很大。

       (5)、散列函数-折叠法

           将关键码从左到右分割成位数相等的几部分,将这几部分叠加求和,取后几位作为散列地址。

           适用情况:关键码位数很多,事先不知道关键码的分布。


处理冲突的方法-开放定址法

      由关键码得到的散列地址一旦产生了冲突,就去寻找下一个空的散列地址,并将记录存入。

                                     方法:1、线性探测法            2、二次探测法                3、随机探测法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值