NYoj_104最大和

最大和

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 5
描述

给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵。 
例子:
0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
其最大子矩阵为:

9 2 
-4 1 
-1 8 
其元素总和为15。 

输入
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
每组测试数据:
第一行有两个的整数r,c(0<r,c<=100),r、c分别代表矩阵的行和列;
随后有r行,每行有c个整数;
输出
输出矩阵的最大子矩阵的元素之和。
样例输入
1
4 4
0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
样例输出

15

算法分析:二维数组求最大和,本题可以转换成为一维。

1. 将行划分,划分的结果为所有情况

2.将划分好的“新行”进行合并成“一行”,

3.对“一行”进行一维的求最大子段和

举个例子:

0  -2  -7  0

9   2  -6  2

-4  1  -4   7

-1  8  0   -2

我们分别用i j表示起始行和终止行,遍历所有的可能:

for(i=1;i<=n;i++)

for(j=i;j<=n;j++) {}

我们考察其中一种情况 i=2 j=4,这样就相当与选中了2 3 4三行,求那几列的组合能获得最大值,由于总是 2 3 4行,所以我们可以将这3行”捆绑”起来,变为求 4(9-4-1),11(8+2+1),-10(-6-4+0),7(7+2-2)的最大子段和,ok,问题成功转化为一维的情况!

注意:代码中还有一个地方需要注意,就是读入原始数据的时候,要处理一下,再保存到数组中,每一行的数据都不是原来的数据,而是加上同一列以上各行的数据,这样以来,在合并求和的时候就比较方便了。比如求2,3两行的和,只要第三行的值减去第一行的值就行了

#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <algorithm>
using namespace std;

int a[110][110], b[110];
#define mem(a) memset(a, 0, sizeof(a))

int Max_sum(int b[], int c) {
	int sum = 0, res = -9999999;
	for (int i = 1; i<=c; i++) {
		if (sum > 0)	sum += b[i];
		else	sum = b[i];
		if (sum > res)	res = sum;
	}
	return res;
}

int main() {
	int t;
	scanf("%d",&t);
	while (t --) {
		mem(a);
		mem(b);
		int r, c;
		scanf("%d%d",&r, &c);
		for (int i = 1; i<=r; i++) {
			for (int j = 1; j<=c; j++) {
				scanf("%d",&a[i][j]);
				a[i][j] += a[i-1][j];
			}
		}
		int res = -9999999;
		for (int i = 0; i<=r; i++) {
			for (int j = i+1; j<=r; j++) {
				for (int k = 1; k<=c; k++) {
					b[k] = a[j][k] - a[i][k];
				}
				int Max = Max_sum(b, c);
				if (res < Max)	res = Max;
			}
		}
		printf("%d\n",res);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值