ValueHistogram是aggregate package中最强大的类,基于每个键,对其value做以下统计
1)唯一值个数
2)最小值个数
3)中位置个数
4)最大值个数
5)平均值个数
6)标准方差
环境:Vmware 8.0 和ubuntu11.04
Hadoop 实战之Streaming(十)---通过Aggregate包使用Streaming
第一步: 首先在/home/tanglg1987目录下新建一个start.sh脚本文件,每次启动虚拟机都要删除/tmp目录下的全部文件,重新格式化namenode,代码如下:
sudo rm -rf /tmp/*
rm -rf /home/tanglg1987/hadoop-0.20.2/logs
hadoop namenode -format
hadoop datanode -format
start-all.sh
hadoop fs -mkdir input
hadoop dfsadmin -safemode leave
第二步:给start.sh增加执行权限并启动hadoop伪分布式集群,代码如下:
chmod 777 /home/tanglg1987/start.sh
./start.sh
运行过程如下:
第三步:上传本地文件到hdfs
在专利局http://data.nber.org/patents/网站下载专利数据
http://data.nber.org/patents/apat63_99.zip
hadoop fs -put /home/tanglg1987/apat63_99.txt input
第四步:新建一个ValueHistogram.py的Python文件
ValueHistogram.py代码如下:
#!/usr/bin/env python
import sys
index1 = int(sys.argv[1])
index2 = int(sys.argv[2])
for line in sys.stdin:
fields = line.split(",")
print "ValueHistogram:" + fields[index1] + "\t" + fields[index2]
第五步:新建一个test.py的Python文件
解决Linux下运行Python脚本显示“: 没有那个文件或目录”的问题
我猜不少人都遇到过类似的问题:
在Windows下写好了一个python脚本,运行没问题
但放到Linux系统下就必须在命令行前加上一个python解释器才能运行
脚本开头的注释行已经指明了解释器的路径,也用chmod给了执行权限,但就是不能直接运行脚本。
比如这个脚本:
#!/usr/bin/env python
#-*- coding=utf-8 -*-
def main():
print('This is just a test!\r\n')
if __name__ == '__main__':
main()
按理说没错的,但为什么不能直接运行呢?
后来发现问题出在换行表示上……
Windows下,文本的换行是\r\n一同实现的,而*nix下则只用\n
所以我的第一行代码在Linux下就被识别为了:
#!/usr/bin/env python\r
很显然,系统不知道这个"python\r"是个什么东西……
知道了这个,解决方案就很显而易见了,写了一个自动替换换行标志的脚本:
#!/usr/bin/env python
#-*- coding=utf-8 -*-
import sys, os
def replace_linesep(file_name):
if type(file_name) != str:
raise ValueError
new_lines = []
#以读模式打开文件
try:
fobj_original = open(file_name, 'r')
except IOError:
print('Cannot read file %s!' % file_name)
return False
#逐行读取原始脚本
print('Reading file %s' % file_name)
line = fobj_original.readline()
while line:
if line[-2:] == '\r\n':
new_lines.append(line[:-2] + '\n')
else:
new_lines.append(line)
line = fobj_original.readline()
fobj_original.close()
#以写模式打开文件
try:
fobj_new = open(file_name, 'w')
except IOError:
print('Cannot write file %s!' % file_name)
return False
#逐行写入新脚本
print('Writing file %s' % file_name)
for new_line in new_lines:
fobj_new.write(new_line)
fobj_new.close()
return True
def main():
args = sys.argv
if len(args) < 2:
print('Please enter the file names as parameters follow this script.')
os._exit(0)
else:
file_names = args[1:]
for file_name in file_names:
if replace_linesep(file_name):
print('Replace for %s successfully!' % file_name)
else:
print('Replace for %s failed!' % file_name)
os._exit(1)
if __name__ == '__main__':
main()
第六步:新建一个replace.sh的shell文件
/home/tanglg1987/test/streaming/test.py *.py
运行过程如下:
第七步:编写一个名为:list-4-11.sh的shell脚本
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-0.20.2-streaming.jar -input input/apat63_99.txt -output output -file /home/tanglg1987/test/streaming/ValueHistogram.py -mapper 'ValueHistogram.py 1 4' -reducer aggregate
第八步:给list-4-11.sh增加执行权限并启动脚本,代码如下:
chmod 777 /home/tanglg1987/list-4-11.sh
./list-4-11.sh
第九步:运行过程如下:
第十步:查看结果集,运行结果如下: