大数据Spark(五十三):Structured Streaming Deduplication

本文探讨了在实时流处理中如何使用Spark的Structured Streaming进行去重操作,特别是在网站UV统计场景下。通过介绍和代码演示,展示了无Watermark和有Watermark情况下如何处理重复记录,并提供了针对userId和eventType进行去重的示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

Streaming Deduplication

介绍

需求

代码演示


Streaming Deduplication

介绍

在实时流式应用中,最典型的应用场景:网站UV统计。

1:实时统计网站UV,比如每日网站UV;

2:统计最近一段时间(比如一个小时)网站UV,可以设置水位Watermark;

Structured Streaming可以使用deduplication对有无Watermark的流式数据进行去重操作:

1.无

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lansonli

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值