例 7.2 不容易系列之一(九度教程第 94 题)

题目描述:
大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就
像花钱总是比挣钱容易的道理一样。话虽这样说,我还是要告诉大家,要想失败
到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语
考试的时候,竟然把 40 个单项选择题全部做错了!大家都学过概率论,应该知
道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句
经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做
错,一个不对。不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的——HDU 有个网名叫做 8006 的男性同学,结交网友无数,最近该
同学玩起了浪漫,同时给 n 个网友每人写了一封信,这都没什么,要命的是,他
竟然把所有的信都装错了信封!注意了,是全部装错哟!现在的问题是:请大家
帮可怜的 8006 同学计算一下,一共有多少种可能的错误方式呢?
输入:
输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正
整数 n(1<n<=20), n 表示 8006 的网友的人数。
输出:
对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。
样例输入:
2
3
样例输出:
1
2
思路:
大写字母为信封编号,小写字母为信编号,两者对应则装对
k装入N
若n装入K,则剩余n-2封信做一个错排F(n-2)种
若n未装入K,假设n应该装入K,那么n未装入形成一个n-1的错排F(n-1)
n的位置选取有n-1种

F(n)=(n-1)*F(n-1)+(n-1)*F(n-2)
#include<stdio.h>
int main(){
	int n;
	while(scanf("%d",&n)!=EOF){
		int num[21];
		num[1]=0;
		num[2]=1;
		for(int i=3;i<=n;i++){
			//num[i]=(i-1)*num[i-1];
			//错误未考虑被装入错误信的信封对应的信装入哪里
			num[i]=(i-1)*num[i-1]+(i-1)*num[i-2];
		}
		printf("%d\n",num[n]);
	}
	return 0;
} 
展开阅读全文

没有更多推荐了,返回首页