Java学习第32天:图的连通性检测
1.什么是结点的连通性?
若图 G 中两个不同的结点 u 和 v 存在路径 e,则称结点 u 和结点 v 连通。
2.什么是图的连通性?
若图 G 中任意两个结点连通,则称图 G 连通。
检测原理:
适用于有向图. 反正无向图是有向图的特殊形式;0 次方的时候是单位矩阵;为每一个方法写一个独立的测试方法. 测试代码有时比正常使用的代码更多;第一个测试用例是无向图, 第二个是有向图.可以看到, 后者从节点 1 不能到达节点 0.
代码如下:
package day32to35;
import day31.IntMatrix;
public class Graph {
//连通矩阵
IntMatrix connectivityMatrix;
/**
* @Description: 第一个构造函数
* @Param: [paraNumNodes]
* @return:
*/
public Graph(int paraNumNodes) {
connectivityMatrix = new IntMatrix(paraNumNodes, paraNumNodes);
}
/**
* @Description: 第二个构造函数
* @Param: [paraMatrix]
* @return:
*/
public Graph(int[][] paraMatrix) {
connectivityMatrix = new IntMatrix(paraMatrix);
}
public String toString() {
String resultString = "This is the connectivity matrix of the graph.\r\n"
+ connectivityMatrix;
return resultString;
}
/**
* @Description: 判断连通性
* @Param: []
* @return: boolean
*/
public boolean getConnectivity() throws Exception {
// 首先初始化一个单位矩阵
IntMatrix tempConnectivityMatrix = IntMatrix
.getIdentityMatrix(connectivityMatrix.getData().length);
// 初始化目标矩阵
IntMatrix tempMultipliedMatrix = new IntMatrix(connectivityMatrix);
// 计算矩阵
for (int i = 0; i < connectivityMatrix.getData().length - 1; i++) {
tempConnectivityMatrix.add(tempMultipliedMatrix);
tempMultipliedMatrix = IntMatrix.multiply(tempMultipliedMatrix, connectivityMatrix);
}
// 判断连通性
System.out.println("The connectivity matrix is: " + tempConnectivityMatrix);
int[][] tempData = tempConnectivityMatrix.getData();
for (int i = 0; i < tempData.length; i++) {
for (int j = 0; j < tempData.length; j++) {
if (tempData[i][j] == 0) {
System.out.println("Node " + i + " cannot reach " + j);
return false;
}
}
}
return true;
}
/**
* @Description: 测试
* @Param: []
* @return: void
*/
public static void getConnectivityTest() {
// 测试一个非连通图
int[][] tempMatrix = { { 0, 1, 0 }, { 1, 0, 1 }, { 0, 1, 0 } };
Graph tempGraph2 = new Graph(tempMatrix);
System.out.println(tempGraph2);
boolean tempConnected = false;
try {
tempConnected = tempGraph2.getConnectivity();
} catch (Exception e) {
System.out.println(e);
}
System.out.println("Is the graph connected? " + tempConnected);
// 测试一个连通图
tempGraph2.connectivityMatrix.setValue(1, 0, 0);
tempConnected = false;
try {
tempConnected = tempGraph2.getConnectivity();
} catch (Exception e) {
System.out.println(e);
}
System.out.println("Is the graph connected? " + tempConnected);
}
public static void main(String args[]) {
Graph tempGraph = new Graph(3);
System.out.println(tempGraph);
getConnectivityTest();
}
}
运行结果:
This is the connectivity matrix of the graph.
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
This is the connectivity matrix of the graph.
[[0, 1, 0], [1, 0, 1], [0, 1, 0]]
The connectivity matrix is: [[2, 1, 1], [1, 3, 1], [1, 1, 2]]
Is the graph connected? true
The connectivity matrix is: [[1, 1, 1], [0, 2, 1], [0, 1, 2]]
Node 1 cannot reach 0
Is the graph connected? false
注:需要自己理解有向图和无向图的区别,还有邻接矩阵和关联矩阵的不同概念。本文中连通矩阵就是邻接矩阵。
Java学习第33天: 图的广度优先遍历
图的遍历,所谓遍历,即是对结点的访问。广度优先遍历简称BFS,类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点。
具体算法表述如下:
- 访问初始结点v并标记结点v为已访问。
- 结点v入队列
- 当队列非空时,继续执行,否则算法结束。
- 出队列,取得队头结点u。
- 查找结点u的第一个邻接结点w。
- 若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
1). 若结点w尚未被访问,则访问结点w并标记为已访问。
2). 结点w入队列
3). 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。
如下图,其广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8
代码如下:
/**
* @Description: 广度优先遍历
* @Param: [paraStartIndex]
* @return: java.lang.String
*/
public String breadthFirstTraversal(int paraStartIndex) {
CircleObjectQueue tempQueue = new CircleObjectQueue();
String resultString = "";
int tempNumNodes = connectivityMatrix.getRows();
boolean[] tempVisitedArray = new boolean[tempNumNodes];
tempVisitedArray[paraStartIndex] = true;
tempVisitedArray[paraStartIndex] = true;
resultString += paraStartIndex;
tempQueue.enqueue(paraStartIndex);
int tempIndex;
Integer tempInteger = (Integer)tempQueue.dequeue();
while (tempInteger != null) {
tempIndex = tempInteger.intValue();
for (int i = 0; i < tempNumNodes; i ++) {
if (tempVisitedArray[i]) {
continue;
}
if (connectivityMatrix.getData()[tempIndex][i] == 0) {
continue;
}
tempVisitedArray[i] = true;
resultString += i;
tempQueue.enqueue(i);
}
tempInteger = (Integer)tempQueue.dequeue();
}
return resultString;
}
/**
* @Description: 测试广度优先遍历
* @Param: []
* @return: void
*/
public static void breadthFirstTraversalTest() {
// 测试一个非连通图
int[][] tempMatrix = { { 0, 1, 1, 0 }, { 1, 0, 0, 1 }, { 1, 0, 0, 1}, { 0, 1, 1, 0} };
Graph tempGraph = new Graph(tempMatrix);
System.out.println(tempGraph);
String tempSequence = "";
try {
tempSequence = tempGraph.breadthFirstTraversal(0);
} catch (Exception e) {
System.out.println(e);
}
System.out.println("The breadth first order of visit: " + tempSequence);
}
运行结果:
This is the connectivity matrix of the graph.
[[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]]
The breadth first order of visit: 0123
注:调用了第22天二叉树的储存(层次遍历)。
Java学习第34天: 图的深度优先遍历
深度优先遍历简称DFS,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点。总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。我们从这里可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
具体算法表述如下:
- 访问初始结点v,并标记结点v为已访问。
- 查找结点v的第一个邻接结点w。
- 若w存在,则继续执行4,否则算法结束。
- 若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。
- 查找结点v的w邻接结点的下一个邻接结点,转到步骤3。
例如下图,其深度优先遍历顺序为 1->2->4->8->5->3->6->7
代码如下:
/**
* @Description: 深度遍历
* @Param: [paraStartIndex]
* @return: java.lang.String
*/
public String depthFirstTraversal(int paraStartIndex) {
ObjectStack tempStack = new ObjectStack();
String resultString = "";
int tempNumNodes = connectivityMatrix.getRows();
boolean[] tempVisitedArray = new boolean[tempNumNodes];
tempVisitedArray[paraStartIndex] = true;
tempVisitedArray[paraStartIndex] = true;
resultString += paraStartIndex;
tempStack.push(paraStartIndex);
System.out.println("Push " + paraStartIndex);
System.out.println("Visited " + resultString);
int tempIndex = paraStartIndex;
int tempNext;
Integer tempInteger;
while (true) {
//找到最近的节点
tempNext = -1;
for (int i = 0; i < tempNumNodes; i++) {
if (tempVisitedArray[i]) {
continue;
}
if (connectivityMatrix.getData()[tempIndex][i] == 0) {
continue;
}
tempVisitedArray[i] = true;
resultString += i;
tempStack.push(i);
System.out.println("Push " + i);
tempNext = i;
break;
}
if (tempNext == -1) {
//没有最近节点后返回到上一节点去寻找最近节点
if (tempStack.isEmpty()) {
break;
}
tempInteger = (Integer) tempStack.pop();
System.out.println("Pop " + tempInteger);
tempIndex = tempInteger.intValue();
} else {
tempIndex = tempNext;
}
}
return resultString;
}
/**
* @Description: 深度遍历测试
* @Param: []
* @return: void
*/
public static void depthFirstTraversalTest() {
// 测试一个非连通图
int[][] tempMatrix = {{0, 1, 1, 0}, {1, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}};
Graph tempGraph = new Graph(tempMatrix);
System.out.println(tempGraph);
String tempSequence = "";
try {
tempSequence = tempGraph.depthFirstTraversal(0);
} catch (Exception e) {
System.out.println(e);
}
System.out.println("The depth first order of visit: " + tempSequence);
}
运行结果:
This is the connectivity matrix of the graph.
[[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0]]
Push 0
Visited 0
Push 1
Push 3
Pop 3
Pop 1
Pop 0
Push 2
Pop 2
The depth first order of visit: 0132
注:调用了第25天二叉树深度遍历的栈实现 (中序遍历)。