论文写作数学表达式学习第三天

8.4 作业

原文链接
1.将向量下标为偶数的分量 (x2, x4, …) 累加, 写出相应表达式.
∑ i = 2 , 4 , … x i \displaystyle\sum_{i=2,4,\dots}xi i=2,4,xi

2.各出一道累加、累乘、积分表达式的习题, 并给出标准答案.
计算: 1 + 2 + ⋯ + 10 1 + 2 + \dots + 10 1+2++10
∑ i = 1 10 i = 55 \sum_{i = 1}^{10} i=55 i=110i=55
计算: 1 × 2 × ⋯ × 10 1 \times 2 \times\dots\times10 1×2××10
∏ i = 1 10 i = 3628800 \prod_{i = 1}^{10} i=3628800 i=110i=3628800
计算: ∫ 0 10 x 2 + x + 1 d x = 1180 / 3 \int_{0}^{10} x^2 + x + 1 \mathrm{d}x=1180/3 010x2+x+1dx=1180/3
3.你使用过三重累加吗? 描述一下其应用.
没使用过,但据说可以用来求时间复杂度。
4.给一个常用的定积分, 将手算结果与程序结果对比
计算: ∫ 0 10 x + 1 d x = 60 \int_{0}^{10} x + 1 \mathrm{d}x=60 010x+1dx=60
代码:
double integration = 0;
double delta = 0.01;
for (int x = 0; x <= 10; x += delta)
integeration += (x + 1) * delta;
运行结果:60.06

9.3 作业

原文链接
自己写一个小例子,来验证最小二乘法.

Matlab最基础的程序如下:
%原始数据
X=[163 123 150 123 141];
Y=[186 126 172 125 148];
n=5; %一共5个变量
x2=sum(X.^2); % 求Σ(xi^2)
x1=sum(X); % 求Σ(xi)
x1y1=sum(X.Y); % 求Σ(xiyi)
y1=sum(Y); % 求Σ(yi)
a=(nx1y1-x1y1)/(nx2-x1x1); %解出直线斜率b=(y1-ax1)/n
b=(y1-a
x1)/n; %解出直线截距
%作图
% 先把原始数据点用蓝色十字描出来
figure
plot(X,Y,’+’);
hold on
% 用红色绘制拟合出的直线
px=linspace(120,165,45);
py=a*px+b;
plot(px,py,‘r’);
结果 a=1.5555 b=-66.365
在这里插入图片描述

10.6 作业

原文链接
自己推导一遍Logistic回归, 并描述这个方法的特点 (不少于 5 条).
分割超平面
线性分类模型的目标, 是找到一个超平面, 把正例、负例分割.
问题: 如何评价每个超平面的性能?
方案之一, 是最小化错分对象的数量, 但如果多个超平面都满足条件怎么办?
哪个超平面是最优的, 就体现不同算法的设计理念.
方案方二, 就是根据每个对象到超平面的距离, 来计算其损失. 如果正确分类, 则离超平面越远越好; 如果错误分类, 则离超平面越近越好.
图1分割超平面
点到直线的距离
在m 维空间上, m 维向量 w \mathbf{w} w 确定了一条直线.
为方便起见, 令 w \mathbf{w} w 为列向量.
x \mathbf{x} x w \mathbf{w} w 的距离为 x w \mathbf{xw} xw
这个距离带符号. 正号代表 x \mathbf{x} x w \mathbf{w} w的某一边, 负号则表示另一边.
参见《高等数学》.
sigmoid 函数
sigmoid 函数
x \mathbf{x} x到超平面的距离 (带符号) 取值范围为 ( − ∞ , + ∞ ) (-\infty, +\infty) (,+), 希望将其转成概率.
如果距离为负而且离超平面很远, 则它为正例的概率就接近 0;
如果距离为正而且离超平面很远, 则它为正例的概率就接近 1.
使用 sigmoid 函数将距离转成 (我们以为的) 概率
p ( y = 1 ∣ x ; w ) = 1 1 + e − x w p(y = 1 \vert \mathbf{x}; \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{xw}}} p(y=1x;w)=1+exw1
优化目标
统一 y i y_i yi不同取值 (0 或 1)
arg ⁡ max ⁡ w L ( w ) = ∏ i = 1 n p ( y i ∣ x i ; w ) \displaystyle\arg\max_wL(\mathbf{w})=\prod_{i = 1}^{n}p(y_i \vert \mathbf{x}_i; \mathbf{w}) argwmaxL(w)=i=1np(yixi;w)
求解
相乘计算困难, 将其求一个对数, 不改变单调性
log ⁡ L ( w ) = ∑ i = 1 n log ⁡ P ( y i ∣ x i ; w ) \log L(\mathbf{w}) = \sum_{i = 1}^n \log P(y_i \vert \mathbf{x}i; \mathbf{w}) logL(w)=i=1nlogP(yixi;w)
= ∑ i = 1 n y i log ⁡ P ( y i = 1 ∣ x i ; w ) + ( 1 − y i ) log ⁡ ( 1 − P ( y i = 1 ∣ x i ; w ) ) = \sum{i = 1}^n y_i \log P(y_i = 1 \vert \mathbf{x}_i; \mathbf{w}) + (1 - y_i) \log(1 - P(y_i = 1 \vert \mathbf{x}i; \mathbf{w})) =i=1nyilogP(yi=1xi;w)+(1yi)log(1P(yi=1xi;w))
= ∑ i = 1 n y i log ⁡ P ( y i = 1 ∣ x i ; w ) 1 − P ( y i = 1 ∣ x i ; w ) + log ⁡ ( 1 − P ( y i = 1 ∣ x i ; w ) ) = \sum{i = 1}^n y_i \log \frac{P(y_i = 1 \vert \mathbf{x}_i; \mathbf{w})}{1 - P(y_i = 1 \vert \mathbf{x}_i; \mathbf{w})} + \log (1 - P(y_i = 1 \vert \mathbf{x}i; \mathbf{w})) =i=1nyilog1P(yi=1xi;w)P(yi=1xi;w)+log(1P(yi=1xi;w))
= ∑ i = 1 n y i x i w − log ⁡ ( 1 + e x i w ) = \sum{i = 1}^n y_i \mathbf{x}_i \mathbf{w} - \log (1 + e^{\mathbf{x}_i \mathbf{w}}) =i=1nyixiwlog(1+exiw)
w \mathbf{w} w求偏导
∂ log ⁡ L ( w ) ∂ w = ∑ i = 1 n y i x i − e x i w 1 + e x i w x \frac{\partial \log L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i = 1}^n y_i \mathbf{x}_i - \frac{e^{\mathbf{x}_i \mathbf{w}}}{1 + e^{\mathbf{x}_i \mathbf{w}}} \mathbf{x} wlogL(w)=i=1nyixi1+exiwexiwx
= ∑ i = 1 n ( y i − e x i w 1 + e x i w ) x i = \sum{i = 1}^n \left(y_i - \frac{e^{\mathbf{x}_i \mathbf{w}}}{1 + e^{\mathbf{x}_i \mathbf{w}}}\right) \mathbf{x}_i =i=1n(yi1+exiwexiw)xi
令该偏导为 0, 无法获得解析式, 因此用梯度下降.
w t + 1 = w t − α × ∂ log ⁡ L ( w ) ∂ w \mathbf{w}_{t+1}=\mathbf{w}_t-\alpha\times\frac{\partial \log L(\mathbf{w})}{\partial \mathbf{w}} wt+1=wtα×wlogL(w)
优点:
(模型)模型清晰,背后的概率推导经得住推敲。
(输出)输出值自然地落在0到1之间,并且有概率意义(逻辑回归的输出是概率么?https://www.jianshu.com/p/a8d6b40da0cf)。
(参数)参数代表每个特征对输出的影响,可解释性强。
(简单高效)实施简单,非常高效(计算量小、存储占用低),可以在大数据场景中使用。
(可扩展)可以使用online learning的方式更新轻松更新参数,不需要重新训练整个模型。
(过拟合)解决过拟合的方法很多,如L1、L2正则化。
(多重共线性)L2正则化就可以解决多重共线性问题。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值