树的前序遍历、中序遍历与后序遍历的互相求解

这篇博客探讨了如何根据已知的前序、中序或后序遍历来求解其他两种遍历。通过分析遍历的特性,可以构建树并进行相应的遍历。例如,已知前序和中序遍历可以求解后序遍历,反之亦然。文章提供了一种基于递归的方法来实现这一过程。
摘要由CSDN通过智能技术生成

一、已知前序、中序遍历,求后序遍历
最近准备找实习,狂刷算法题,今天做了写了树的前序遍历、中序遍历与后序遍历,因此写篇博客记录一下。
首先,我们看看前序、中序、后序遍历的特性:
前序遍历:
1.访问根节点
2.前序遍历左子树
3.前序遍历右子树
中序遍历:
1.中序遍历左子树
2.访问根节点
3.中序遍历右子树
后序遍历:
1.后序遍历左子树
2.后序遍历右子树
3.访问根节点

在这三种遍历之中,若是求树的构造,则必须知道中序遍历。已知中序遍历、先序遍历可以求后序遍历。已知中序遍历、后序遍历可以求先序遍历。

例:

前序遍历: ABDHECFG

中序遍历: HDBEAFCG

后序遍历: HDEBFGCA

则树为
这里写图片描述

一、已知前序、中序遍历,求后序遍历

画树求法:
第一步,根据前序遍历的序列,取A作为根节点
第二步,观察中序遍历的序列,找到A的位置,并以此来判断A左边有几个节点,右边有几个节点。
第三步,将中序遍历序列及前序遍历序列划分为相应的的左子树序列及右子树序列,分别进行构建节点。这三布迭代执行。

过程可以简洁表达如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

构建好树之后,进行后序遍历。

二、已知后序、中序遍历,求前序遍历,方法与上一致。不同的是,上面每次都是取先序遍历序列的第一个作为当前的根节点,这个是每次都是取后序遍历序列的最后一个作为当前的根节点
一代码为

# include <stdio.h>
# include <stdlib.h>
# include <ctype.h>
# include <string.h>
typedef struct Node
{
    char value ;
    struct Node * left;
    struct Node * right ;
}node;

int FindNode( char * tree , 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值