既然是树,还是用根来描述更为贴切,先把根遍历出来,再遍历左右子树,就是先根遍历;后根遍历就是先把左右子树遍历出来,再把根遍历出来;只要牢记一点,不论怎么遍历,规则同样要作用于子树。
比如上图,先根遍历为:5 3 (2 4) 6(8 7 9),括号里相当于对非叶子节点再进行一次先根遍历;后根遍历为:(2 4) 3 [ (7 9) 8] 6 5;
那么问题来了,只看结果的话,如何根据先根和后根,求出中根遍历。
先根:5 3 2 4 6 8 7 9
后根:2 4 3 7 9 8 6 5
特点1:先根遍历,第一个节点肯定是根,后根遍历最后一个节点肯定是根
所以节点5就是整棵树的根了
特点2:先根节点后面紧邻的肯定是左子树节点,后根节点前面紧邻的肯定是右子树节点(存在只有左子树或只有右子树的情况)。
所以节点3是根节点5的左子树,节点6是根节点5的右子树,所以中根遍历为:3 5 6。同理再分别看下关于节点3和节点6:
节点3先根遍历3 2 4,后根遍历2 4 3,所以3就是根节点了,2和4分别是节点3的左右子树,所以中根遍历为 2 3 4。同理,节点6先根遍历为
6 8 7 9,后根遍历为7 9 8 6,所以8肯定是6的子树节点,再看8 7 9和 7 9 8,显然7和9是8的左右子树,所以节点6的中根遍历为:7 8 9 6或 6 7 8 9。
最后得出中根遍历结果为:(2 3 4) 5 (7 8 9) 6,或者 (2 3 4) 5 6 (7 8 9)。