【冰糖Python】PyTorch:损失函数 BCELoss() BCEWithLogitsLoss() 和 CrossEntropyLoss()

PyTorch中提供了很多种损失函数,常用于分类的是 torch.nn.BCELoss()、torch.nn.BCEWithLogitsLoss() 和 torch.nn.CrossEntropyLoss()

其中,torch.nn.BCELoss()、torch.nn.BCEWithLogitsLoss() 用于二分类问题, torch.nn.CrossEntropyLoss() 既可用于二分类又可用于多分类

以下对这三项进行辨析(PyTorch 1.8.0)

1、torch.torch.nn.BCELoss()

此损失函数衡量输出与目标之间的二分类交叉熵

torch.torch.nn.BCELoss(weight=None, reduction='mean')

weight:默认 None,用于计算损失的手动尺度化的权重,张量

reduction:默认 'mean',指定应用于输出的缩减方式,另可选 'none','sum';'none':不应用缩减;'mean':输出的和除以输出内元素数;'sum':输出加和

输入:input -- 形状为\left ( N,* \right )N为样本数量,*为任意其他维度

输入:target -- 形状\left ( N,* \right ),形状同input

输出:output -- 标量(reduction若为none,则形状同input)

未缩减的 loss 可以表示为:

l\left ( x,y \right )=L=\left \{ l_{1},...,l_{N} \right \}^{T},\; l_{n}=-w_{n}\left [ y_{n}\cdot logx_{n} \right+\left ( 1-y_{n} \right )\cdot log\left ( 1-x_{n} \right ) ]

其中N是 batch 的大小;

如果参数 reduction 不是 'none',则有:

l\left ( x,y \right )=\left\{\begin{matrix} mean\left ( L \right ) ,\; if\; reduction='mean' \\ sum\left ( L \right ),\; if\; reduction='sum' \end{matrix}\right.

目标 y 应为0到1之间的数字;

BCELoss 将log函数的输出限定为始终大于等于-100;

2、torch.nn.BCEWithLogitsLoss()

此损失函数将 Sigmoid 层和 BCELoss 整合在一起

比简单地将 Sigmoid 层加上 BCELoss 损失更稳定,因为使用了 log-sun-exp 技巧获得数值稳定性

torch.nn.BCEWithLogitsLoss(weight=None, reduction='mean', pos_weight=None)

weight:默认 None,用于计算损失的手动尺度化的权重,张量

reduction:默认 'mean',指定应用于输出的缩减方式,另可选 'none','sum';'none':不应用缩减;'mean':输出的和除以输出内元素数;'sum':输出加和

pos_weight:默认 None,正例的权重,需为长度为类别数的向量;

输入:input -- 形状为\left ( N,* \right )N为样本数量,*为任意其他维度

输入:target -- 形状\left ( N,* \right ),形状同input

输出:output -- 标量(reduction若为none,则形状同input)

未缩减的 loss 可以表示为:

l\left ( x,y \right )=L=\left \{ l_{1},...,l_{N} \right \}^{T},\; l_{n}=-w_{n}\left [ y_{n}\cdot logx_{n} \right+\left ( 1-y_{n} \right )\cdot log\left ( 1-x_{n} \right ) ]

其中N是 batch 的大小;

如果参数 reduction 不是 'none',则有:

l\left ( x,y \right )=\left\{\begin{matrix} mean\left ( L \right ) ,\; if\; reduction='mean' \\ sum\left ( L \right ),\; if\; reduction='sum' \end{matrix}\right.

目标 y 应为0到1之间的数字;

可以通过为正例赋权值来平衡 recall 和 precision;

在多标签分类中,loss 可以表示为:

l_{c}\left ( x,y \right )=L_{c}=\left \{ l_{1,c},...,l_{N,c} \right \}^{T},\\l_{n,c}=-w_{n,c}\left [ p_{c}y_{n,c}\cdot log\sigma \left ( x_{n,c} \right ) \right +\left ( 1-y_{n,c} \right )\cdot log\left ( 1-\sigma \left ( x_{n,c} \right ) \right )]

其中 c 为类的数量,大于1时为多标签二分类,等于1时为单标签二分类问题;

p_{c}为对 c 类分为正例的权重,大于1时会增大 recall,小于1时增加 precision;

如果数据集包含20个正例样本,100个负例样本,则 pos_weight 中此类的权重为100/20=5,此时计算loss时犹如数据包含5*20=100个正例样本;

3、torch.nn.CrossEntropyLoss()

此损失函数将 LogSoftmax 和 NLLLoss 的特点进行了整合,用于C类的分类问题

torch.nn.CrossEntropyLoss(weight=None, ignore_index=-100, reduction='mean')

weight:默认 None,用于计算损失的手动尺度化的权重,大小为C的一维张量

ignore_index:默认-100,指定对输入梯度无贡献的应被忽略的目标值的阈值

reduction:默认'mean',指定应用于输出的缩减方式,另可选 'none','sum';'none':不应用缩减;'mean':输出的和除以输出内元素数;'sum':输出加和

输入:input -- 形状为\left ( N,C \right ),为样本N数量,C为类别数,输入应为原始的未经标准化的每一类的得分;

输入:target -- 形状\left ( N \right ),将类的索引\left [ 0,C-1 \right ]作为目标值;

输出:output -- 标量(reduction若为none,则形状同target)

loss可以表示为:

loss\left ( x,class \right )=-log\left ( exp\left ( x\left [ class \right ] \right )/\sum _{j}exp\left ( x\left [ j \right ] \right ) \right ) \\ =-x\left [ class \right ]+log\left ( \sum _{j}exp\left ( x\left [ j \right ] \right ) \right )

当 weight 参数指定时:

loss\left ( x,class \right )=weight\left [ class \right ]\left ( -x\left [ class \right ]+log\left ( \sum _{j}exp\left ( x\left [ j \right ] \right ) \right ) \right )

loss 对每个minibatch在所有样本上平均,weight指定时有加权平均:

loss=\sum _{i=1}^{N}loss\left ( i,class\left [ i \right ] \right )/\sum _{i=1}^{N}weight\left [ class\left [ i \right ] \right ]

其中N是 batch 的大小;

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰糖不在家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值