pytorch之nn.BECWithLogitsLoss使用详解

        nn.BCEWithLogitsLoss 是 PyTorch 中常用的一种损失函数,它结合了 Sigmoid 激活函数和 Binary Cross-Entropy (BCE) 损失函数,被广泛用于二分类问题中。

1.定义

        这个损失函数的定义如下:

BCEWithLogitsLoss(input, target, weight=None, size_average=True, reduce=True, pos_weight=None)

其中:

        input: 模型的原始输出,未经 Sigmoid 激活。

        target: 样本的真实标签,取值为 0 或 1。

        weight: 每个类别的权重,用于处理样本不平衡的情况。

        size_average: 是否取平均值输出。

        reduce: 是否对每个样本的损失值求和。

        p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值