一只手有5个手指头,每个代表1,最大能表示5
如果规定小指头代表1,大拇指代表5,每个指头分别代表12345,那么1+2+3+4+5=15,一只手能代表15
如果规定五个指头分别代表1,2,4,8,16,那么一只手能代表31
如果每个指节代表不同的数,一只手有的指节数3*4+2=14,能代表的数2^14-1=16383,
如果正面和反面代表不同,再乘2
如果加上上下颠倒维度,可以再乘2!
如果侧面也算不同,就要再乘2!
如果仅仅计算以上维度,我们就可以算出一只手能表示的最大值是217-1,总共217个数,这个数是多少呢?131072,十几万!
有人质疑这是理论值,有些数值可能并不好表示出来,因为手指并没有那么灵活,比如小指和无名指的配合.但是别忘了我们还有其他维度可以用,比如手势.
(以后我再想写的时候给可以献上手势照片)
我们需要一些冗余的维度来保证我们的理论值可以实施. 很多时候的理论值达不到就是因为弓拉的太满.而此处,我的维度还没拉满,所以一只手表示十几万是可以的!
那么接下来的问题是,两只手能表示的最大数是多少呢?
不是131072+131072,而是131072*131072,不同维度的叠加都是幂次方!(当然这是指的多维度同时演绎,一个静态的画面,如果加上时间维度,那么一个手能表示无穷大的数了!)
那么咱们再反过来推一下我们的131072, 它由四个维度构成,我们是直接乘的,其实我们应该幂运算,那么也就是
8.7112285931760246646623899502533e+40
这样算来,两只手能表示的最大数就是
7.5885503602567541832791480735294e+81
不管你信不信,反正我吓一跳