Alexnet

1.introduction

        刚开始文章就说了现在(指当时)的训练数据集都是小尺寸的,简单的识别任务可以很好的完成,但是在现实中要考虑很多变量,为了更好的应用就要有更多更大的数据集,人们也已经意识到小数据集的缺点,但是直达最近获取上百万带标签图像才成为可能。为了从上百万图像中识别出几千张目标,我们需要拥有更强大学习能力的模型,同时我们的任务复杂度特别高,即使是imagenet这样的数据集也无法轻易完成,因此我们需要很多先验知识补偿我们没有的所有数据,卷积神经网络(CNN)构成了这类模型之一。可以通过改变其深度和宽度来控制它们的容量,并且它们还对图像的性质(即统计的平稳性和像素依存性的局部性)做出强有力且几乎正确的假设。 因此,与具有类似大小的层的标准前馈神经网络相比,CNN的连接和参数要少得多,因此更易于训练,而其理论上最好的性能可能只会稍差一些。

       Alexnet网络包含许多新的和不寻常的功能 ,网络包含5个卷积层和3个全连接层,此深度似乎很重要:作者发现删除任何卷积层(每个卷积层不超过1个) 都会导致性能较差。 最后,网络的大小主要受到当时GPU可用的内存量以及愿意接受的训练时间的限制。当时的情况GPU比较贵,计算资源很紧张, Alexne网络 使用两个GTX 580 3GB GPUs需要五到六天的时间来训练, 如果当时有更快的GPU和更大的数据集可能会有更好的表现。

    训练数据集大约包含120万张训练图片,5万张验证图片,15万张测试图片。作者使用ILSVRC-2010(当时imagenet中唯一带测试集的)表现最好,也在ILSRVC-2012a上测试过,结果在论文中都有。

     

图1:带有ReLU的四层卷积神经网络(实线)在CIFAR-10上达到25%的训练错误率,比具有tanh神经元的等效网络(虚线)快六倍。 

阅读Alexnet论文时发现的一段话,记录下来:

       根据输入x来模拟神经元输出f的标准方法是f(x)=tanh(x)f(x)=(1+e^{x})^{-1}。 就梯度下降的训练时间而言,这些饱和非线性要比非饱和非线性f(x)=max(0;x)慢得多。 继Nair和Hinton 之后,我们将具有这种非线性的神经元称为整流线性单位(ReLUs)。 带有ReLU的深度卷积神经网络的训练速度比同等的tanh单元快几倍。 这在图1中得到了证明,该图显示了对于特定的四层卷积网络,在CIFAR-10数据集上达到25%训练误差所需的迭代次数。 该图表明,如果使用传统的饱和神经元模型,我们将无法使用如此大型的神经网络进行这项工作。

       我们不是第一个在CNN中考虑替代传统神经元模型的人。 例如,Jarrett等声称非线性f(x)=\left |tanh(x) \right |在其对比归一化类型以及随后在Caltech-101数据集上进行局部平均合并的情况下效果特别好。 但是,在此数据集上,主要的问题是防止过度拟合,因此他们观察到的效果与使用ReLU时拟合报告的训练集的加速能力有所不同。 更快的学习对在大型数据集上训练的大型模型的性能有很大的影响。

2.  Overall architecture

        网络主要由5个卷积层和3个全连接层组成,其实这里说的卷积层还包括了LRN和Pooling,因此在理解网络的时候比较麻烦,由于当时的GPU限制,论文这个图也比较奇怪,让人难以看懂。

完整的计算过程如上图所示,这里也参考了一些其他博主的文章请点击点击2.

3.Local Response Normalization(局部响应归一化)

ReLUs有个很好的特性是它不需要输入正规化来防止它变得饱和。前面说过了,不饱和的函数在梯度下降求解时速度更快。只要某些样本上能对ReLU产生正值的输入,那个神经元就可以学习(敲黑板,记住ReLUs的形状)。然而,作者发现,遵从局部响应的正规化有助于泛化能力。作者提出了一种正则化方法,效果很好。

4.Overlapping Pooling(重叠池化-空间金字塔池化SPP)

CNN中的池化层汇总了同一内核中相邻神经元组的输出映射。一般而言,由相邻池化单元汇总的邻域不重叠。 更准确地说,池化层可以被认为是由以s像素(=stride)为间隔的池化格子组成,每层汇总一个以池化单元为中心的大小为z*z(pooling size)的邻域池单位的。如果我们设置s=z,我们得到了在CNN中通常使用的传统局部池化层。如果设s<z,则得到重叠池化。这就是我们在网络中使用的方法,s=2,z=3。该方案将top-1和top-5错误率分别降低了0.4%和0.3%;与非重叠方案s=2,z=2相比较,产生相同维度的输出。在训练过程中,我们观察到使用重叠池化的模型更不容易过拟合。

参考文献点击获取

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值