预训练对话上下文 Pretraining Methods for Dialog Context Representation Learning 四种无监督的预训练目标

本文探讨了对话上下文表示学习的无监督预训练方法,提出两种新方法:上下文重建和多轮对话连贯性预测。通过预训练,模型在对话状态跟踪等下游任务上表现提升,尤其是在有限数据下表现优越,增强了领域泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pretraining Methods for Dialog Context Representation Learning

Pretraining Methods for Dialog Context Representation Learning

对话系统通常需要理解和处理复杂的对话上下文,这通常涉及多个回合的交互,其中包含了丰富的语义和句法信息。为了捕获这些复杂的信息,需要一种有效的方法来表示对话上下文。最近的研究表明,无监督预训练在自然语言处理任务中取得了显著的效果,这启发我们探索类似的方法用于对话上下文表示学习。

在本文中,我们考察了几种无监督预训练目标,并提出了两种新的对话上下文编码器预训练方法。第一种方法基于上下文重建,它要求模型从被遮盖的对话上下文中恢复出原始信息。第二种方法则利用对话的连贯性,通过预测对话的下一个句子或响应来训练模型。

  1. 预训练目标
    上下文重建:此目标要求模型根据被遮盖的对话上下文预测缺失的单词或句子。
    下一个句子/响应预测:模型需要根据当前对话上下文预测下一个句子或用户/系统的响应。

  2. 对话上下文编码器
    我们使用了基于Transformer的架构作为对话上下文编码器,它能够有效捕获序列中的长期依赖关系。

  3. 预训练过程
    在预训练阶段,我们使用大量的无标签对话数据来训练模型,使其能够学习对话的上下文表示。然后,在微调阶段,我们将预训练好的模型在特定的对话任务上进行微调,以适应特定的任务需求。

Abstract

本文研究了不同的无监督预训练目标,这些目标旨在学习对话上下文的表示。提出了两种新的对话上下文编码器预训练方法,并对四种预训练策略进行了深入研究。通过在MultiWoz数据集上对每个预训练目标进行微调,并在一组下游对话任务上进行评估,我们观察到显著的性能提升。进一步的评估表明,我们的预训练目标不仅能提高模型的性能,还能改善模型的收敛性,使模型在需要更少数据的情况下达到更好的效果,并显示出更好的领域通用性。

Introduction

目前预训练方法仍处在起步阶段,我们仍然不能完全了解他们的性质。大多数方法都是基于语言模型的,给一个句子,预测当前词,下一个词或者被mask的词。如Word2Vec,Glove,ELMO等。这些方法将自然语言看作是word token的流,需要复杂的模型利用大规模的语料库和庞杂的计算来发现更高级别的依赖关系。BERT模型也是基于语言模型,但是加入了句子对级别的信息,预测两句话是否是连续的。这种方法在预训练时利用了语句之间的关系。但是,在对话上下文建模这种存在多轮的依赖关系的任务上还并没有行之有效的预训练方法,于是本文在这个方面做了一些尝试。本文目的就是研究几个预训练话语级语言表示的方法,本文迈出了建立对话系统预训练方法系统分析框架的第一步。

随着自然语言处理技术的快速发展,预训练方法已成为提升模型性能的重要手段。然而,当前的预训练方法多聚焦于语言模型的训练,例如Word2Vec、Glove、ELMo以及BERT等,这些方法虽然在一定程度上提升了模型的泛化能力,但它们更多地是将自然语言视为单词序列的集合,忽略了对话中多轮交互的复杂性和依赖性。

在对话系统中,理解和处理多轮对话上下文是至关重要的一环。对话中的每一轮都包含了丰富的上下文信息,这些信息对于准确理解用户的意图和生成合适的回复至关重要。因此,开发有效的对话上下文预训练方法对于提升对话系统的性能具有重要意义。

本文旨在研究几种预训练话语级语言表示的方法,以期在对话系统领域迈出建立预训练方法系统分析框架的第一步。具体而言,我们探索了以下预训练目标:

上下文重建:该目标要求模型能够根据被遮盖的对话上下文恢复出原始信息。这有助于模型学习对话中各个部分之间的依赖关系,从而更准确地理解对话的整体意义。

多轮对话连贯性预测:不同于传统的句子对连贯性预测,我们关注于多轮对话之间的连贯性。模型需要学习识别哪些对话片段属于同一个对话上下文,以及这些片段之间的逻辑和语义关系。
角色感知的预训练:在对话中,不同角色的发言通常具有不同的语义和功能。通过引入角色信息,模型可以学习识别不同角色的发言,并据此调整其对话上下文表示。

对话状态跟踪预训练:对话状态跟踪是对话系统中的一个重要任务,它要求模型能够实时跟踪对话的进展和状态。我们将对话状态跟踪作为预训练目标之一,使模型在预训练阶段就学习到对话状态的变化和更新机制。

为了验证这些预训练目标的有效性,我们在多个对话系统任务上进行了实验,包括意图识别、槽位填充、对话生成等。实验结果表明,通过预训练,模型在各项任务上的性能均得到了显著提升。同时,我们还发现不同的预训练目标对不同的任务有不同的影响,这为我们选择最适合的预训练目标提供了依据。

尽管本文在对话系统预训练方法上取得了一些初步的成果,但仍然存在许多挑战和问题需要进一步探索。例如,如何设计更有效的预训练目标以捕捉对话中的复杂依赖关系?如何结合对话系统的特定需求来定制预训练方法?这些都是未来研究的重要方向。我们期待通过不断的研究和实践,能够建立起更加完善的对话系统预训练方法体系,为对话系统的发展做出更大的贡献。

评估预训练方法的四个假设:

  • 预训练能够在整个可用数据集上进行微调,且提升下游任务
  • 预训练结果需要更好的收敛
  • 预训练将在有限的数据下表现出色
  • 预训练有助于领域通用化

对话与其他文本的区别:

  • 对话必须是语句之间连贯的,并在多轮上达到一个交际的目的。
  • 对话在本质上是互动的,说话者之间有反馈,而且说话者轮流进行发言。

本文的主要贡献:

  • 针对对话上下文表示研究四个不同的预训练方法,包括两个新的方法
  • 在四个下游任务上,综合分析预训练对对话上下文表示的影响

Related Work

这项工作与NLP系统的辅助多任务学习和带预训练的迁移学习的研究紧密相关。

Training with Auxiliary Tasks

结合有用的辅助损失函数来补充主要目标已被证明可以改善深度神经网络模型的性能。一些辅助损失函数专门设计来提高特殊任务的性能。在一些案例中,辅助函数被用来提升模型的泛化能力。经过适当的辅助任务预训练后,模型可以捕获更长的依赖关系。

Transfer Learning with Pretraining

基本过程通常是首先在无监督目标的海量文本数据上预训练功能强大的神经编码器。 第二步是使用更小的域内数据集对特定的下游任务微调此预训练模型。ELMo使用BiLSTM网络来训练双向语言模型来同时预测前一个词和后一个词。OpenAI的GPT使用Transformer网络和BERT进行了两个目标的同时训练:掩蔽语言模型和下一句预测。每个模型均已在GLUE基准上展示了最新的结果。这些利用大规模预训练的模型优于仅使用域内数据的系统。用于学习从输入文本中提取话语级别信息的预训练方法的工作很少。BERT中的下一句话预测损失是朝着这个方向迈出的一步。尽管这些预训练方法擅长于对顺序文本进行建模,但它们并未明确考虑对话的独特话语级功能。因此,我们在研究预训练目标时采取了第一步,以提取对话上下文的更好的话语级表示形式。

Pretraining Objectives

本文定义了一种强有力的表示形式,它可以捕获整个对话历史中的话语级信息以及构成该历史的话语中的话语级信息,在本文的定义下,当表示允许模型在各种下游任务上表现更好时,表示就足够通用了。

  • 一个任意T轮对话(对话历史)的表示符号: c = [ u 1 , . . . , u t ] c = [u_1,...,u_t] c=[u1,...,ut] u i u_i ui是一个话语。
  • 对话回复 R = r 1 , . . . , r M R = {r_1,...,r_M} R=r1,...,rM

Next-Utterance Retrieval(NUR-检索下一句话)

NUR的目的就是在 k k k个候选回复中选择正确的下一句话。对于此任务,本文使用分层编码器来生成对话上下文的表示,方法是首先通过双向长期短期记忆网络(biLSTM)独立运行每个话语,然后使用所得的话语表示来生成整个对话上下文的表示。给定 [ u 1 , . . . u T − 1 ] [u_1,... u_{T-1}] [u1...uT1],NUR的任务是从R中选择正确的下一个话语 u T u_T uT。损失运算公式如下:

u i ^ = f u ( u i ) , i ∈ [ 1 , T − 1 ] [ h 1 , . . . h T − 1 ] = f c ( u 1 , . . . u ^ T − 1 ) r g t = f r ( u T ) r j = f r ( r j ) , r j ∼ p n ( r ) a g t = ( h T − 1 ) T r g t a j = ( h T − 1 ) T r j \hat{u_i}=f_u(u_i), i\in [1,T-1]\\ [h_1,...h_{T-1}]=f_c(u_1,...\hat{u}_{T-1})\\ r_{gt} = f_r(u_T)\\ r_{j} = f_r(r_j),r_j\sim p_n(r)\\ a_{gt} = (h_{T-1})^{T}r_{gt}\\ a_{j} = (h_{T-1})^{T}r_{j} ui^=fu(ui),i[1,T1][h1,...hT1]=fc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EwenWanW

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值