33. 搜索旋转排序数组。
整数数组 nums 按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], …, nums[n-1], nums[0], nums[1], …, nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。
给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。
示例 1:
输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4
示例 2:
输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1
示例 3:
输入:nums = [1], target = 0
输出:-1
提示:
1 <= nums.length <= 5000
-10^4 <= nums[i] <= 10^4
nums 中的每个值都 独一无二
题目数据保证 nums 在预先未知的某个下标上进行了旋转
-10^4 <= target <= 10^4
算法分析
解题思路
- 先二分找到nums[0]的位置
- target>nums[0], 继续二分左部分 否则二分右部分
- 二分结束判断二分值是否等于target,等于返回,否则返回-1
class Solution {
public int search(int[] nums, int target) {
if (nums.length == 0) return -1;
int l = 0, r = nums.length - 1;
while (l < r) {
int mid = l + r + 1>> 1;
if (nums[mid] >= nums[0]) l = mid;
else r = mid - 1;
}
if (target >= nums[0]) {
l = 0;
} else {
l = r + 1;
r = nums.length - 1;
}
while (l < r) {
int mid = l + r >> 1;
if (nums[mid] >= target) r = mid;
else l = mid + 1;
}
if (nums[r] == target) return r;
return -1;
}
}
复杂性分析
时间复杂度:O(n)
空间复杂度:O(1)