- 4 5
- 1 4 9
- 4 3 8
- 1 2 5
- 2 4 6
- 1 3 7
这里用u、v和w三个数组用来记录每条边的具体信息,即u[i]、v[i]和w[i]表示第i条边是从第u[i]号顶点到v[i]号顶点(u[i]àv[i]),且权值为w[i]。
再用一个first数组来存储每个顶点其中一条边的编号,fisrt[i]表示与顶点i相连最后一个点的边的编号,(first[4]=2,就是4号顶点有条边,编号为2)
next[i]存储的是“编号为i的边”的“前一条边”的编号。
//初始化first数组下标1~n的值为-1,表示1~n顶点暂时都没有边
for(i=1;i<=n;i++)
first[i]=-1;
for(i=1;i<=m;i++)
{
scanf("%d %d %d",&u[i],&v[i],&w[i]);//读入每一条边
//下面两句是关键啦
next[i]=first[u[i]];
first[u[i]]=i;
题目描述
输入描述:
第一行有一个整数n,表示树的节点数。 接下来n–1行,每行两个整数x,y,表示存在一条从x到y的有向边。 输入保证是一棵有根树。
输出描述:
输出一个数表示答案
示例1
输入
5 2 3 2 1 2 4 4 5
输出
5
说明
节点1子树中编号为1,值域连续 节点3子树中编号为3,值域连续 节点5子树中编号为5,值域连续 节点4子树中编号为4,5,值域连续 节点2子树中编号为1,2,3,4,5,值域连续
备注:
对于100%的数据,有n <=100000
#include <bits/stdc++.h>
using namespace std;
const int maxn = 200000 + 10;
int n;
int h[maxn], to[maxn], nx[maxn], cnt;
int mn[maxn], mx[maxn], sz[maxn], in[maxn];
void add(int u, int v) {
to[cnt] = v;
nx[cnt] = h[u];
h[u] = cnt ++;
}
void dfs(int x) {
sz[x] = 1;
mn[x] = x;
mx[x] = x;
for(int i = h[x]; i != -1; i = nx[i]) {
dfs(to[i]);
sz[x] += sz[to[i]];
mn[x] = min(mn[x], mn[to[i]]);
mx[x] = max(mx[x], mx[to[i]]);
}
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i ++) {
h[i] = -1;
in[i] = 0;
}
cnt = 0;
for(int i = 1; i < n; i ++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
in[v] ++;
}
for(int i = 1; i <= n; i ++) {
if(in[i] == 0) {
dfs(i);
}
}
int ans = 0;
for(int i = 1; i <= n; i ++) {
if(mx[i] - mn[i] + 1 == sz[i]) ans ++;
}
printf("%d\n", ans);
return 0;
}