今天,在我们的世界里充满了数据,人们不能避免直接或间接地处理各种数据,图像数据是海量数据的重要组成部分。但是,无论是用于何种用途,这些图像都需要进行处理。图像处理是对数字图像进行分析和处理的过程,旨在改进或提取其中的某些信息,然后将其用于某些行业领域。
图像处理中的常见任务包括显示图像、基本操作(如裁剪、翻转、旋转等)、图像分割、分类和特征提取、图像恢复和图像识别。由于Python语言具有很多先进的图像处理工具,而且越来越普及。所以Python成为图像处理任务的最佳选择。
下面我就给大家介绍Python中常用的图像处理工具:
1、Numpy
Numpy是Python编程的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准Numpy数组。因此,我们可以通过使用基本的NumPy操作,例如切片、掩膜和花式索引,来修改图像的像素值。可以使用skimage加载图像并使用matplotlib显示图像。一般用Numpy来对图像进行脱敏处理。
2、scikit-image
scikit-image是一个开源的Python包,适用于numpy数组。它实现了用于研究,教育和工业应用的算法和实用工具。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质。
scikit-image作为skimage导入,大多数功能都在子模块中找的到。主要应用于图像过滤,使用match_template函数进行模板匹配。