Python十大图像处理工具,让图像简洁直观有魅力!

本文介绍了Python中十大图像处理工具,包括Numpy、scikit-image、PIL、Scipy、SimpleCV、OpenCV、ITK、Mahotas、Pycairo和Pgmagick。这些库覆盖了从基本操作到复杂分析的多种功能,如图像滤波、分割、特征提取、模板匹配等,是图像处理和计算机视觉领域的得力助手。
摘要由CSDN通过智能技术生成

今天,在我们的世界里充满了数据,人们不能避免直接或间接地处理各种数据,图像数据是海量数据的重要组成部分。但是,无论是用于何种用途,这些图像都需要进行处理。图像处理是对数字图像进行分析和处理的过程,旨在改进或提取其中的某些信息,然后将其用于某些行业领域。
在这里插入图片描述
图像处理中的常见任务包括显示图像、基本操作(如裁剪、翻转、旋转等)、图像分割、分类和特征提取、图像恢复和图像识别。由于Python语言具有很多先进的图像处理工具,而且越来越普及。所以Python成为图像处理任务的最佳选择。

下面我就给大家介绍Python中常用的图像处理工具:

1、Numpy

Numpy是Python编程的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准Numpy数组。因此,我们可以通过使用基本的NumPy操作,例如切片、掩膜和花式索引,来修改图像的像素值。可以使用skimage加载图像并使用matplotlib显示图像。一般用Numpy来对图像进行脱敏处理。

2、scikit-image

scikit-image是一个开源的Python包,适用于numpy数组。它实现了用于研究,教育和工业应用的算法和实用工具。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质。

scikit-image作为skimage导入,大多数功能都在子模块中找的到。主要应用于图像过滤,使用match_template函数进行模板匹配。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值