stable diffusion 本地部署教程 2025最新版

 前提:

需要环境

git

git下载地址Git - Downloading Package

 直接装即可

python3.10.6

下载地址

Python Release Python 3.10.6 | Python.org

记得python环境一定要3.10.6!!!

第一个版本

项目地址https://github.com/AUTOMATIC1111/stable-diffusion-webui

或者使用git来拉取(如果没有git,git也要去下载)

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

安装依赖

pip install -r requirements.txt

安装

打开stable-diffusion-webui-master文件夹

点开   webui-user.bat  文件

等待安装完成

如果没有问题,直接等待安装完成即可,使用

在浏览器打开,输入 http://127.0.0.1:7860 即可

 

Bug解决

Torch is not able to use GPU

 如果不走gpu来跑的话,你可以直接打开 webui-user.bat  文件,右键编辑

然后加入 --lowvram --precision full --no-half --skip-torch-cuda-test 就解决了,这个是最快的一个解决方式,但是问题来了,cpu去渲染图片非常的慢。起码10分钟起步,gpu的话我1060 10秒左右,3060 3秒左右。

 这个是另外的一个解决方案,使用gpu跑

下载驱动

下载对应驱动Official Advanced Driver Search | NVIDIA

 根据自己显卡型号进行选择

然后直接安装即可

安装CUDA

首先查看自己电脑所支持的版本

打开桌面右键->nvidia控制面板

​​

 然后打开系统信息

​​

 然后

​​

然后能看见目前能支持的是11.4版本 

 我这边的是11.4版本,所以我选择了11.4,你们根据自己情况来选择

然后一样安装即可

安装的时候选择高级安装

​ 

 

然后就是安装路径最好记一下

​ 然后安装即可。

然后查看环境变量

点击设置-->搜索高级系统设置-->查看环境变量

 看看有没有这4个变量,没有的话手动加上去即可

然后win+r 输入cmd,打开控制台,输入

nvcc --version

 

 这样就说明安装成功了

然后这个问题基本就解决了

 然后这个时候跑stable-diffusion-webui-master里面的webui-user.bat(双击即可),这个应该问题就过去了

如果出现打开网页后出现Something went wrong Expecting value: line 1 column 1 (char 0)

因为给其他应用占用了

退出这个东西即可

然后 ai模型网站

LiblibAI-哩布哩布AI - 中国领先的AI创作平台

然后描述词的话,这个网站会可以找到,每张图片都有描述词

大模型放在stable-diffusion-webui-master\sd.webui\webui\models\Stable-diffusion里面即可

 

 lora模型放在

\stable-diffusion-webui-master\sd.webui\webui\models\Lora 这个文件夹即可

项目实例

github开源项目ollama-chat-ui-vue,该项目包涵 stable diffusion 和 ollama,deepseek 本地接口对接,后续支持更多ai功能集成包括,ai生音乐生成ppt等 ,最后githut开源项目不易,帮忙点点star

stable diffusion 的内容在 develop-stablediffusion 分支中
在这里插入图片描述

其他相关教程

YuE本地部署完整教程,可用于ai生成音乐,歌曲

Stable Diffusion vue本地api接口对接,模型切换, ai功能集成开源项目 ollama-chat-ui-vue

ollama-chat-ui-vue,一个可以用vue对接ollama的开源项目,可接入deepSeek

deepSeek本地部署,详细教程,Ollama安装

### Stable Diffusion 在 Mac 上的本地部署教程 #### 准备工作 为了在 Mac 设备上成功安装并运行 Stable Diffusion,需先确认设备满足最低硬件需求。建议使用配备 M1 或更新版本芯片的 Mac 电脑,这类机器能够更好地支持 GPU 加速功能[^1]。 #### 安装依赖环境 通过 Homebrew 来简化 Python 和其他必要工具链的安装过程。打开终端执行如下命令完成 Homebrew 的安装: ```bash /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` 接着利用 Homebrew 安装 Miniconda: ```bash brew install --cask miniconda ``` 创建一个新的 Conda 虚拟环境用于隔离项目依赖项: ```bash conda create -n stable-diff python=3.8 conda activate stable-diff ``` #### 获取并配置 Stable Diffusion 源码库 访问官方 GitHub 页面下载最新版源代码仓库至本地文件夹内。也可以直接克隆 Git 仓库到指定位置: ```bash git clone https://github.com/CompVis/stable-diffusion-public.git ~/stable_diffusion_public/ cd ~/stable_diffusion_public/ ``` 按照 README.md 文件中的指导说明设置好所需的 Python 库和其他资源。通常情况下这一步骤涉及 pip 工具的帮助: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu pip install -r requirements.txt ``` 对于 macOS 用户来说特别需要注意的是,在上述过程中可能遇到 PyTorch 版本兼容性问题以及 CUDA 支持缺失的情况。由于苹果自家 Metal API 取代了传统意义上的 NVIDIA 显卡驱动程序接口,因此推荐采用 CPU-only 方式构建模型推理环境或者尝试第三方提供的 Metal 插件解决方案。 #### 测试实例化服务端口监听情况 一切准备就绪之后便可以启动 FastAPI Web Server 进行初步测试啦! ```bash uvicorn api:app --host 0.0.0.0 --port 8000 ``` 此时应该可以在浏览器地址栏输入 `http://localhost:8000/docs` 访问 Swagger UI 文档界面查看可用 API 接口列表,并上传图片或提交文字提示词来体验图像生成功能效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值