RCM潜在结果

本文探讨了RCM(基于潜在结果框架的因果统计分析方法),它在处理无法通过随机实验获取的因果效应时发挥作用。文章强调个体处理稳定性假设(SUTVA)的重要性,并区分了随机化和非随机化的分配机制,指出直接比较可能不反映真实因果效应,特别关注样本量和方差对平均因果效应的影响。
摘要由CSDN通过智能技术生成

概念

RCM是一种基于潜在结果框架的因果统计分析方法

因果推理的困境

无法直接观察到单元级别的因果效应,通过随机试验进行随机分配,各组(平均)相等,计算treatment组和control组之间唯一差异,样本之间的平均值差异来获得平均因果效应(也称为平均处理效应)的估计值

然而,现实由于伦理或实际问题,随机实验是不可能的。存在非随机分配机制,比如人们不是随机分配上大学的,人们可能会根据他们的经济状况、父母的教育等来选择上大学

个体处理稳定性假设 (SUTVA)

超越了独立性的概念

我们假设“对一个个体潜在结果的观察不应受到其他个体的特定处理分配的影响”

分配机制

随机化

非随机化

直接比较不能代表处理的因果效应

如果样本较大且方差较小,则无论随机分配给处理的特定单位如何,平均因果效应将更接近真实的平均因果效应

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值