序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法 对算法本身的速度要求很高。 而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将 给出详细的说明。
对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。 我将按照算法的复杂度,从简单到难来分析算法。第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种 算法因为涉及树与堆的概念,所以这里不于讨论。第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。现在,让我们开始吧:
一、简单排序算法
由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境
下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么
问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。
1.冒泡法:
这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:
1.#include <iostream.h> 2.void BubbleSort(int* pData,int Count)
3.{
4.int iTemp;
5.for(int i=1;i<Count;i++)
6. {
7. for(int j=Count-1;j>=i;j--)
8. {
9. if(pData[j]<pData[j-1])
10. {
11. iTemp = pData[j-1];
12. pData[j-1] = pData[j];
13. pData[j] = iTemp;
14. }
15. }
16. }
17.}
18.19.void main()
20.{
21.int data[] = {10,9,8,7,6,5,4};
22.BubbleSort(data,7);
23.for (int i=0;i<7;i++)
24. cout<<data[i]<<" ";
25.cout<<"/n";
26.}
27.倒序(最糟情况)
第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次
其他:
第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。 写成公式就是1/2*(n-1)*n。现在注意,我们给出O方法的定义:
若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没 学好数学呀,对于编程数学是非常重要的!!!)
现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n) =O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的原因,我们通常都是通过循环次数来对比算法。
2.交换法:
交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
1.#include <iostream.h> 2.void ExchangeSort(int* pData,int Count)
3.{
4.int iTemp;
5.for(int i=0;i<Count-1;i++)
6. {
7. for(int j=i+1;j<Count;j++)
8. {
9. if(pData[j]<pData[i])
10. {
11. iTemp = pData[i];
12. pData[i] = pData[j];
13. pData[j] = iTemp;
14. }
15. }
16. }
17.}
18.19.void main()
20.{
21.int data[] = {10,9,8,7,6,5,4};
22.ExchangeSort(data,7);
23.for (int i=0;i<7;i++)
24. cout<<data[i]<<" ";
25.cout<<"/n";
26.}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次
其他:
第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。
3.选择法:
现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下) 这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中 选择最小的与第二个交换,这样往复下去。
1.#include <iostream.h> 2.void SelectSort(int* pData,int Count)
3.{
4.int iTemp;
5.int iPos;
6.for(int i=0;i<Count-1;i++)
7. {
8. iTemp = pData[i];
9. iPos = i;
10. for(int j=i+1;j<Count;j++)
11. {
12. if(pData[j]<iTemp)
13. {
14. iTemp = pData[j];
15. iPos = j;
16. }
17. }
18. pData[iPos] = pData[i];
19. pData[i] = iTemp;
20. }
21.}
22.23.void main()
24.{
25.int data[] = {10,9,8,7,6,5,4};
26.SelectSort(data,7);
27.for (int i=0;i<7;i++)
28. cout<<data[i]<<" ";
29.cout<<"/n";
30.}
31.倒序(最糟情况)
第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)
第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
循环次数:6次
交换次数:2次
其他:
第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)
第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n 所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。
4.插入法:
插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张
1.#include <iostream.h> 2.void InsertSort(int* pData,int Count)
3.{
4.int iTemp;
5.int iPos;
6.for(int i=1;i<Count;i++)
7. {
8. iTemp = pData[i];
9. iPos = i-1;
10. while((iPos>=0) && (iTemp<pData[iPos]))
11. {
12. pData[iPos+1] = pData[iPos];
13. iPos--;
14. }
15. pData[iPos+1] = iTemp;
16. }
17.}
18.19.void main()
20.{
21.int data[] = {10,9,8,7,6,5,4};
22.InsertSort(data,7);
23.for (int i=0;i<7;i++)
24. cout<<data[i]<<" ";
25.cout<<"/n";
26.}
27.倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
循环次数:6次
交换次数:3次
其他:
第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
循环次数:4次
交换次数:2次
上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是,因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<= 1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’ 而这里显然多了一些,所以我们浪费了时间。
最终,我个人认为,在简单排序算法中,选择法是最好的。
二、高级排序算法:
高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使 用这个过程(最容易的方法——递归)。
1.快速排序:
1.#include <iostream.h> 2.void run(int* pData,int left,int right)
3.{
4.int i,j;
5.int middle,iTemp;
6.i = left;
7.j = right;
8.middle = pData[(left+right)/2]; //求中间值 9. do{
10. while((pData[i]<middle) && (i<right))//从左扫描大于中值的数 11. i++;
12. while((pData[j]>middle) && (j>left))//从右扫描大于中值的数 13. j--;
14. if(i<=j)//找到了一对值 15. {
16. //交换 17. iTemp = pData[i];
18. pData[i] = pData[j];
19. pData[j] = iTemp;
20. i++;
21. j--;
22. }
23.}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次) 24.25.//当左边部分有值(left<j),递归左半边 26.if(left<j)
27. run(pData,left,j);
28.//当右边部分有值(right>i),递归右半边 29.if(right>i)
30. run(pData,i,right);
31.}
32.void QuickSort(int* pData,int Count)
33.{
34.run(pData,0,Count-1);
35.}
36.void main()
37.{
38.int data[] = {10,9,8,7,6,5,4};
39.QuickSort(data,7);
40.for (int i=0;i<7;i++)
41. cout<<data[i]<<" ";
42.cout<<"/n";
43.}
44.这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)*n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢 于快速排序(因为要重组堆)。
三、其他排序
1.双向冒泡:
通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。 代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。 反正我认为这是一段有趣的代码,值得一看。
1.#include <iostream.h> 2.void Bubble2Sort(int* pData,int Count)
3.{
4.int iTemp;
5.int left = 1;
6.int right =Count -1;
7.int t;
8.do {
9. //正向的部分 10. for(int i=right;i>=left;i--)
11. {
12. if(pData[i]<pData[i-1])
13. {
14. iTemp = pData[i];
15. pData[i] = pData[i-1];
16. pData[i-1] = iTemp;
17. t = i;
18. }
19. }
20. left = t+1;
21. //反向的部分 22. for(i=left;i<right+1;i++)
23. {
24. if(pData[i]<pData[i-1])
25. {
26. iTemp = pData[i];
27. pData[i] = pData[i-1];
28. pData[i-1] = iTemp;
29. t = i;
30. }
31. }
32. right = t-1;
33. }while(left<=right);
34.}
35.36.void main()
37.{
38.int data[] = {10,9,8,7,6,5,4};
39.Bubble2Sort(data,7);
40.for (int i=0;i<7;i++)
41. cout<<data[i]<<" ";
42.cout<<"/n";
43.}
44.2.SHELL排序
这个排序非常复杂,看了程序就知道了。 首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。 工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序,以次类推。
1.#include <iostream.h> 2.void ShellSort(int* pData,int Count)
3.{
4.int step[4];
5.step[0] = 9;
6.step[1] = 5;
7.step[2] = 3;
8.step[3] = 1;
9.int i,Temp;
10.int k,s,w;
11.for(int i=0;i<4;i++)
12. {
13. k = step[i];
14. s = -k;
15. for(int j=k;j<Count;j++)
16. {
17. iTemp = pData[j];
18. w = j-k;//求上step个元素的下标 19. if(s ==0)
20. {
21. s = -k;
22. s++;
23. pData[s] = iTemp;
24. }
25. while((iTemp<pData[w]) && (w>=0) && (w<=Count))
26. {
27. pData[w+k] = pData[w];
28. w = w-k;
29. }
30. pData[w+k] = iTemp;
31. }
32. }
33.}
34.35.void main()
36.{
37.int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
38.ShellSort(data,12);
39.for (int i=0;i<12;i++)
40. cout<<data[i]<<" ";
41.cout<<"/n";
42.}
43.呵呵,程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0 步长造成程序异常而写的代码。这个代码我认为很值得一看。这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并 “超出本书讨论范围”的原因(我也不知道过程),我们只有结果了.
转载自:http://kim.ccshu.org/
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/xr122361131/archive/2008/08/05/2773160.aspx