目录
一、OpenCV 是什么
在计算机视觉领域,OpenCV 就像是一位无所不能的超级英雄,默默地为各种视觉任务提供强大的支持,在众多开发者的项目中发挥着关键作用。无论是在安防监控中精准的人脸识别,还是自动驾驶汽车对道路和障碍物的实时识别,亦或是工业生产中对产品质量的严格检测,OpenCV 都无处不在。
OpenCV,全称 Open Source Computer Vision Library,是一个基于 BSD 许可(开源)发行的跨平台计算机视觉库 ,可以运行在 Linux、Windows、Android 和 Mac OS 等众多操作系统上。它轻量级而且高效,由一系列 C 函数和少量 C++ 类构成,同时提供了 Python、Ruby、MATLAB 等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
OpenCV 的起源可以追溯到 1999 年,由 Intel 建立。当时计算机视觉领域发展迅速,但缺乏一个统一、高效且开源的工具库。Intel 看到了这个需求,于是启动了 OpenCV 项目,旨在提供一套全面的计算机视觉算法库,让开发者能够更轻松地进行相关研究和应用开发。最初,它的主要目标是为人机界面提供实时计算机视觉支持,并针对 Intel 处理器进行了特定优化。
2000 年,第一个开源版本 OpenCV alpha 3 发布,虽然功能还相对基础,但它开启了 OpenCV 的辉煌历程。此后,OpenCV 不断发展壮大,陆续发布了多个版本,功能逐渐丰富,性能也不断提升。2006 年,支持 Mac OS 的 OpenCV 1.0 发布,标志着 OpenCV 在跨平台支持上迈出了重要一步。随着时间的推移,OpenCV 加入了越来越多新的算法和特性,对多种编程语言的支持也更加完善。如今,OpenCV 已经成为全球最受欢迎的计算机视觉库之一,拥有庞大的开发者社区,大家共同为 OpenCV 的发展贡献力量,不断推动它在各个领域的广泛应用。
二、OpenCV 的特点
OpenCV 之所以在计算机视觉领域如此受欢迎,是因为它具有一系列令人瞩目的特点,使其成为开发者的首选工具。
2.1 开源免费
OpenCV 遵循开源协议,这意味着其源代码完全公开,开发者可以自由地使用、修改和分发,无需支付任何版权费用。这极大地降低了开发成本,无论是个人开发者进行创新项目,还是企业进行大规模的应用开发,都能从中受益。同时,全球的开发者都可以为其贡献代码,不断推动 OpenCV 的发展和完善,使其功能日益强大。例如,一个小型创业公司想要开发一款基于计算机视觉的智能安防产品,使用 OpenCV 就可以节省大量的软件授权费用,将更多资金投入到产品的其他关键环节。
2.2 跨平台支持
OpenCV 支持 Windows、Linux、Mac OS、Android、iOS 等多种主流操作系统,以及树莓派等嵌入式系统。这使得开发者可以在不同的平台上使用相同的代码进行开发和部署,无需为每个平台单独编写代码。无论是在 PC 端进行图像分析,还是在移动端实现实时视觉应用,OpenCV 都能轻松胜任。比如,开发一款跨平台的图像编辑应用,利用 OpenCV,开发者可以一套代码适配 Windows、Mac OS 和 Linux 系统,大大提高开发效率。
2.3 多语言接口
OpenCV 提供了 C++、Python、Java、MATLAB 等多种编程语言的接口。C++ 接口能让开发者充分利用其高效性能,适用于对性能要求极高的实时视觉处理应用;Python 接口简洁易用,在学术研究和快速原型开发中备受青睐;Java 接口便于将 OpenCV 集成到更广泛的平台和应用中;MATLAB 接口则在算法研究和教学领域发挥重要作用。不同编