Hadoop学习视频心得(五)Shuffle机制

1、Shuffle机制

1)、Partition分区

​ 关于如何分区是一个难点,这边看下HashPartitioner源码

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ExJEhTnT-1609484666230)(C:\Users\xiaoyoupei\AppData\Roaming\Typora\typora-user-images\image-20201229214819484.png)]

​ 因此默认分区是按照key的hashCode对ReduceTasks个数取模得到的,用户没法控制哪个key存储到哪个分区。

​ 但是这样会导致什么问题的,可能其中一个分区的数据很多,另外一个分区的数据很少,就是所谓的数据倾斜

2)、自定义Partiton

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kXsa8uxI-1609484666231)(file:///C:\Users\XIAOYO~1\AppData\Local\Temp\ksohtml5284\wps14.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Qmw9nQGj-1609484666233)(file:///C:\Users\XIAOYO~1\AppData\Local\Temp\ksohtml5284\wps15.png)]

3)、自定义Partiton举例

​ 将统计结果按照手机归属地不同省份输出到不同文件中(分区)手机号136、137、138、139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中。

①、MyPartitoner.java
public class MyPartitoner extends Partitioner<Text, FlowBean> {

    /**
     * 对每一条<k,v>对返回对应的分区号
     *
     * @param text
     * @param flowBean
     * @param numPartitions
     * @return
     */
    public int getPartition(Text text, FlowBean flowBean, int numPartitions) {
        //取手机号的前三位
        String phone_head = text.toString().substring(0, 3);
        switch (phone_head) {
            case "136":
                return 0;
            case "137":
                return 1;
            case "138":
                return 2;
            case "139":
                return 3;
            default:
                return 4;
        }
    }
}
②、NewFlowDriver.java
public class NewFlowDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Job job = Job.getInstance(new Configuration());

        job.setJarByClass(NewFlowDriver.class);

        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        //分区数
        job.setNumReduceTasks(5);
        job.setPartitionerClass(MyPartitoner.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        FileInputFormat.setInputPaths(job, new Path("d:/DATA/input"));
        FileOutputFormat.setOutputPath(job, new Path("d:/DATA/output"));

        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}
③、待处理文件内容

phone_data .txt(文件名)

1	13736230513	192.196.100.1	www.atguigu.com	2481	24681	200
2	13846544121	192.196.100.2			264	0	200
3 	13956435636	192.196.100.3			132	1512	200
4 	13966251146	192.168.100.1			240	0	404
5 	18271575951	192.168.100.2	www.atguigu.com	1527	2106	200
6 	84188413	192.168.100.3	www.atguigu.com	4116	1432	200
7 	13590439668	192.168.100.4			1116	954	200
8 	15910133277	192.168.100.5	www.hao123.com	3156	2936	200
9 	13729199489	192.168.100.6			240	0	200
10 	13630577991	192.168.100.7	www.shouhu.com	6960	690	200
11 	15043685818	192.168.100.8	www.baidu.com	3659	3538	200
12 	15959002129	192.168.100.9	www.atguigu.com	1938	180	500
13 	13560439638	192.168.100.10			918	4938	200
14 	13470253144	192.168.100.11			180	180	200
15 	13682846555	192.168.100.12	www.qq.com	1938	2910	200
16 	13992314666	192.168.100.13	www.gaga.com	3008	3720	200
17 	13509468723	192.168.100.14	www.qinghua.com	7335	110349	404
18 	18390173782	192.168.100.15	www.sogou.com	9531	2412	200
19 	13975057813	192.168.100.16	www.baidu.com	11058	48243	200
20 	13768778790	192.168.100.17			120	120	200
21 	13568436656	192.168.100.18	www.alibaba.com	2481	24681	200
22 	13568436656	192.168.100.19			1116	954	200
④、输出结果

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nmp9OvHX-1609484666233)(C:\Users\xiaoyoupei\AppData\Roaming\Typora\typora-user-images\image-20201229225716023.png)]

4)、自定义WritableComparable排序案例实操

需求:对总流量进行排序

①、FlowBean.java
/**
 * 实现WritableComparable接口
 */
public class FlowBean implements WritableComparable<FlowBean> {
    private long upFlow;
    private long downFlow;
    private long sumFlow;

    public void set(long upFlow, long downFlow) {
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    /**
     * 序列化:将对象数据写到框架指定的地方
     *
     * @param dataOutput 数据的容器
     * @throws IOException
     */
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(sumFlow);
    }

    /**
     * 反序列化:从框架指定的地方读取数据填充对象
     *
     * @param dataInput 数据的容器
     * @throws IOException
     */
    public void readFields(DataInput dataInput) throws IOException {
        this.upFlow = dataInput.readLong();
        this.downFlow = dataInput.readLong();
        this.sumFlow = dataInput.readLong();
    }

    /**
     * 比较方法,按照总流量的降序进行排序
     *
     * @param o
     * @return
     */
    @Override
    public int compareTo(FlowBean o) {
        /*if(this.sumFlow<o.sumFlow){
            return 1;
        }else if(this.sumFlow==o.sumFlow){
            return 0;
        }else{
            return 1;
        }*/

        return Long.compare(o.sumFlow, this.sumFlow);
    }
}
②、CompareMapper.java
public class CompareMapper extends Mapper<LongWritable, Text, FlowBean, Text> {

    private FlowBean flow = new FlowBean();
    private Text phone = new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //一行数据
        String line = value.toString();

        //切分
        String[] fileds = line.split("\t");

        //封装
        phone.set(fileds[0]);
        flow.setUpFlow(Long.parseLong(fileds[1]));
        flow.setDownFlow(Long.parseLong(fileds[2]));
        flow.setSumFlow(Long.parseLong(fileds[3]));

        //写出去
        context.write(flow, phone);
    }
}
③、CompareReducer.java
public class CompareReducer extends Reducer<FlowBean,Text,Text,FlowBean> {

    /**
     * Reduce收到的数据已经排完序了,输出就可以
     * @param key
     * @param values
     * @param context
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
        for (Text value : values) {
            context.write(value,key);
        }
    }
}
④、CompareDriver.java
/**
 * 对总流量进行降序排序
 */
public class CompareDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        BasicConfigurator.configure();
        Job job = Job.getInstance(new Configuration());

        job.setJarByClass(CompareDriver.class);

        job.setMapperClass(CompareMapper.class);
        job.setReducerClass(CompareReducer.class);

        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        FileInputFormat.setInputPaths(job, new Path("d:/DATA/output"));
        FileOutputFormat.setOutputPath(job, new Path("d:/DATA/output1"));

        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}

⑤、要处理的数据(txt)
13470253144	180	180	360
13509468723	7335	110349	117684
13560439638	918	4938	5856
13568436656	3597	25635	29232
13590439668	1116	954	2070
13630577991	6960	690	7650
13682846555	1938	2910	4848
13729199489	240	0	240
13736230513	2481	24681	27162
13768778790	120	120	240
13846544121	264	0	264
13956435636	132	1512	1644
13966251146	240	0	240
13975057813	11058	48243	59301
13992314666	3008	3720	6728
15043685818	3659	3538	7197
15910133277	3156	2936	6092
15959002129	1938	180	2118
18271575951	1527	2106	3633
18390173782	9531	2412	11943
84188413	4116	1432	5548
⑥、处理的结果
13509468723	7335	110349	117684
13975057813	11058	48243	59301
13568436656	3597	25635	29232
13736230513	2481	24681	27162
18390173782	9531	2412	11943
13630577991	6960	690	7650
15043685818	3659	3538	7197
13992314666	3008	3720	6728
15910133277	3156	2936	6092
13560439638	918	4938	5856
84188413	4116	1432	5548
13682846555	1938	2910	4848
18271575951	1527	2106	3633
15959002129	1938	180	2118
13590439668	1116	954	2070
13956435636	132	1512	1644
13470253144	180	180	360
13846544121	264	0	264
13729199489	240	0	240
13768778790	120	120	240
13966251146	240	0	240

5)、自定义SortComparator排序案例实操

就那上面的题目进行讲解,直接增加一个自定义SortComparator排序

①、FlowComparator,java
public class FlowComparator extends WritableComparator {

    protected FlowComparator() {
        super(FlowBean.class, true);
    }

    @Override
    public int compare(WritableComparable a, WritableComparable b) {
        FlowBean fa = (FlowBean) a;
        FlowBean fb = (FlowBean) b;

        return Long.compare(fb.getSumFlow(), fa.getSumFlow());
    }
}

②、在上述的CompareDriver添加
job.setSortComparatorClass(FlowComparator.class);

​ 二者功能差不多,大多数可能会用第一个,比较直观的看出

6)、Combiner合并

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-n3u4wm2f-1609484666234)(file:///C:\Users\XIAOYO~1\AppData\Local\Temp\ksohtml7300\wps1.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SMqVp9PM-1609484666234)(C:\Users\xiaoyoupei\AppData\Roaming\Typora\typora-user-images\image-20210101103713208.png)]

​ 上图中红框就是combiner的两次操作(相当于提前实现了Reduce的功能)

①、自定义Combiner实现步骤:
a、自定义一个Combiner继承Reducer,重写Reduce方法
public class WordcountCombiner extends Reducer<Text, IntWritable, Text,IntWritable>{

	@Override
	protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {

        // 1 汇总操作
		int count = 0;
		for(IntWritable v :values){
			count += v.get();
		}

        // 2 写出
		context.write(key, new IntWritable(count));
	}
}
b、在Job驱动类中设置
job.setCombinerClass(WordcountCombiner.class);

7)、GroupingComparator分组(辅助排序)

​ 对Reduce阶段的数据根据某一个或几个字段进行分组。

①、分组排序步骤
a、自定义类继承WritableComparator
b、重写compare()方法
@Override
public int compare(WritableComparable a, WritableComparable b) {
		// 比较的业务逻辑
		return result;
}
c、创建一个构造将比较对象的类传给父类
protected OrderGroupingComparator() {
		super(OrderBean.class, true);
}

8)、GroupingComparator分组案例实操

需求:现在需要求出每一个订单中最贵的商品

①、要处理的数据(按照订单id、商品id、成交金额排列)
0000001	Pdt_01	222.8
0000002	Pdt_05	722.4
0000001	Pdt_02	33.8
0000003	Pdt_06	232.8
0000003	Pdt_02	33.8
0000002	Pdt_03	522.8
0000002	Pdt_04	122.4
②、需求解析(思路)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-acgdsfa3-1609484666235)(file:///C:\Users\XIAOYO~1\AppData\Local\Temp\ksohtml7300\wps2.png)]

③、代码实现
a、OrderBean.java
public class OrderBean implements WritableComparable<OrderBean> {

    private String orderId;
    private String productId;
    private double price;

    @Override
    public String toString() {
        return  orderId + '\t' + productId + '\t' + + price;
    }

    public String getOrderId() {
        return orderId;
    }

    public void setOrderId(String orderId) {
        this.orderId = orderId;
    }

    public String getProductId() {
        return productId;
    }

    public void setProductId(String productId) {
        this.productId = productId;
    }

    public double getPrice() {
        return price;
    }

    public void setPrice(double price) {
        this.price = price;
    }

    /**
     * 排序逻辑:先按照订单排序,订单相同按照价格降序排列
     * @param o
     * @return
     */
    @Override
    public int compareTo(OrderBean o) {
        int compare = this.orderId.compareTo(o.orderId);
        if(compare !=0){
            return compare;
        }else {
            return Double.compare(o.price,this.price);
        }
    }

    @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeUTF(orderId);
        dataOutput.writeUTF(productId);
        dataOutput.writeDouble(price);
    }

    @Override
    public void readFields(DataInput dataInput) throws IOException {
        this.orderId=dataInput.readUTF();
        this.productId=dataInput.readUTF();
        this.price=dataInput.readDouble();
    }
}
b、OrderMapper.java
/**
 * 封装OrderBean
 */
public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {

    private OrderBean order = new OrderBean();

    /**
     * Map用于封装OrderBean
     *
     * @param key
     * @param value
     * @param context
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //拆分
        String[] fields = value.toString().split("\t");

        //封装过程
        order.setOrderId(fields[0]);
        order.setProductId(fields[1]);
        order.setPrice(Double.parseDouble(fields[2]));

        context.write(order, NullWritable.get());
    }
}
c、OrderComparator.java
/**
 * 按照订单编号对数据进行分组
 */
public class OrderComparator extends WritableComparator {

    protected OrderComparator() {
        super(OrderBean.class, true);
    }

    /**
     * 分组比较方法,按照相同订单进入一组进行比较
     *
     * @param a
     * @param b
     * @return
     */
    @Override
    public int compare(WritableComparable a, WritableComparable b) {
        OrderBean oa = (OrderBean) a;
        OrderBean ob = (OrderBean) b;

        return oa.getOrderId().compareTo(ob.getOrderId());
    }
}
d、OrderReducer.java
/**
 * 取每个订单的最高价格
 */
public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {
    /**
     * 取每个订单的最高价格
     *
     * @param key     订单信息(最大值)
     * @param values  无任何有效信息
     * @param context
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
        context.write(key, NullWritable.get());
    }
}
e、OrderDriver.java
public class OrderDriver {
    public static void main(String[] args) throws Exception {
        Job job = Job.getInstance(new Configuration());

        job.setJarByClass(OrderDriver.class);

        job.setMapperClass(OrderMapper.class);
        job.setReducerClass(OrderReducer.class);

        //设置分组比较器
        job.setGroupingComparatorClass(OrderComparator.class);

        job.setMapOutputKeyClass(OrderBean.class);
        job.setMapOutputValueClass(NullWritable.class);
        job.setOutputKeyClass(OrderBean.class);
        job.setOutputValueClass(NullWritable.class);

        FileInputFormat.setInputPaths(job, new Path("D:/DATA/input"));
        FileOutputFormat.setOutputPath(job, new Path("D:/DATA/output3"));

        boolean b = job.waitForCompletion(true);

        System.exit(b ? 0 : 1);
    }
}
④、拓展(取每个订单的前二高价格)

​ 唯一变动的就是OrderReducer的代码

public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {
    /**
     * 取每个订单的最高价格
     *
     * @param key     订单信息(最大值)
     * @param values  无任何有效信息
     * @param context
     * @throws IOException
     * @throws InterruptedException
     @Override protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
     context.write(key, NullWritable.get());
     }*/

    /**
     * 取每个订单的前二高价格
     *
     * @param key
     * @param values
     * @param context
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
        Iterator<NullWritable> iterator = values.iterator();
        for (int i = 0; i < 2; i++) {
            if (iterator.hasNext()) {
                NullWritable value = iterator.next();
                context.write(key, value);
            }
        }
    }
}

​ 注解:这边为什么要这样做?是因为Reducer传来的数据是序列化的,Reducer用的时候会将数据反序列化,会提前准备<key,value>的空对象,当第一组过来反序列化操作,next后第二组反序列化操作,但是这个对象的地址没变

2、如何在网页打开hdfs上直接操作

<property>
           <name>hadoop.http.staticuser.user</name>
              <value>root</value>
</property>

这样就授权为root,还是要根据自己虚拟机hadoop的权限来设置

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ro0hp4cn-1609484666224)(C:\Users\xiaoyoupei\AppData\Roaming\Typora\typora-user-images\image-20201229173230723.png)]

3、对比Map、MapTask、Mapper、Mapper.map

Map阶段:是抽象的概念,在这个时期实际执行的是MapTask

MapTask:里面调用run方法就是一个Map的阶段(等同于上面概念的实现类)

Mapper:在MapTask中会调用写的Mapper(自己写的在run中会建立Mapper对象/如果没写就用系统默认的)

Mapper.map:run会调用Mapper对象的map方法

4、MapTask工作机制

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EggkhrcU-1609484666227)(file:///C:\Users\XIAOYO~1\AppData\Local\Temp\ksohtml5284\wps10.png)]

5、ReduceTask工作机制

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VcqtStac-1609484666228)(file:///C:\Users\XIAOYO~1\AppData\Local\Temp\ksohtml5284\wps11.png)]

提问:reduce设置几个呢?

​ reduce设置几个是手动设置的,根据具体的数据量人为设定,比如设置10个,就是:setNumReduceTasks(10),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

友培

数据皆开源!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值