目录
题目:
1. Pyecharts 题目
请使用 pyecharts
创建一个柱状图,展示五个城市的最高温度和最低温度,并满足以下要求:
- 城市:北京、上海、广州、深圳、武汉
- 随机生成这些城市的最高温度和最低温度数据
- 使用两种颜色区分最高温度和最低温度
- 为每个城市的柱状图添加温度差(最高温度 - 最低温度)的数据标签
- 自定义图表的标题、图例和坐标轴标签,确保图表信息清晰易懂
2. ECharts 题目
请使用 ECharts(通过 JavaScript 实现)绘制一个柱状图,显示不同商品的销售量,并按以下要求完成:
- 商品包括:电脑、手机、耳机、相机、手表
- 随机生成每个商品的销售量数据
- 设置自定义颜色的渐变效果,使得柱状图更加美观
- 在每个柱状图上显示销售量的数值
- 实现一个功能:当鼠标悬停在某个柱子上时,显示该商品的销售量占总销售量的百分比
- 自定义图表的标题、提示框(tooltip)、图例(legend)等配置项,提高图表的信息表达能力和美观度
3. Seaborn 题目
请使用 seaborn
库绘制一个柱状图,用以展示某班级学生的数学成绩分布情况,并满足以下高级配置:
- 班级由30名学生组成,学生ID从1到30
- 数学成绩从数据库或随机生成,范围在50到100分之间
- 为不同成绩段的柱子设置不同的颜色(如:60以下、60-80、80以上)
- 在图表上添加平均分的水平线,并用特殊颜色或线型突出显示
- 使用
seaborn
的高级配置自定义图表的样式和色彩,包括但不限于调色板的选择、字体大小、图表背景等
4. Matplotlib 题目
请使用 matplotlib
绘制一个柱状图,比较五种不同运动(例如:篮球、足球、游泳、跑步、自行车)在男性和女性中的参与率,并按以下要求完成:
- 为每种运动随机生成男性和女性的参与率百分比
- 使用不同的颜色区分男性和女性
- 在每个柱状图上方显示具体的百分比值
- 自定义坐标轴的标签,包括横轴(运动类型)和纵轴(参与率百分比)
- 添加图表标题、图例,并调整图表的布局以确保所有元素都清晰可见
- 探索
matplotlib
的高级配置项,例如调整坐标轴的刻度、设置网格线、添加注释等,以提高图表的可读性和美观度.
Pyecharts
题目:
请使用 pyecharts
创建一个柱状图,展示五个城市的最高温度和最低温度,并满足以下要求:
- 城市:北京、上海、广州、深圳、武汉
- 随机生成这些城市的最高温度和最低温度数据
- 使用两种颜色区分最高温度和最低温度
- 为每个城市的柱状图添加温度差(最高温度 - 最低温度)的数据标签
- 自定义图表的标题、图例和坐标轴标签,确保图表信息清晰易懂
构思图表:
1.图形类别:柱状图
1.变量:
x轴:x轴位类目轴,即为城市:北京、上海、广州、深圳、武汉。
y轴:最高温度 最低温度 温度差
2. 配置项:
- 1.初始化:
width(宽)=1000px,
height(高)=600px,
bg_color(背景颜色)=white
- 2.图例(legend_opts):
- 位置:默认上中
- 3.标题(title_opts):
标题(title):五个城市的最高温度和最低温度及温度差
标题颜色: 黑色;
子标题:单位:℃
子标题颜色:黑色;
- 4.提示(toltip_opts):#交互formatter="{c}℃
- 5.显示(label_opts):formatter="{a}<br>{c}℃
- 6.渲染(render):"temperature_bar_chart_pra.html"
分析完毕代码如下:
代码
from pyecharts.charts import Bar
from pyecharts import options as opts
import random
cities = ["北京", "上海", "广州", "深圳", "武汉"]
low_temperatures=[random.randint(0,20) for _ in range(len(cities))]
high_temperatures=[random.randint(25,40) for _ in range(len(cities))]
temperature_diffs=[high-low for high,low in zip(high_temperatures,low_temperatures)]
bar=Bar(
init_opts=opts.InitOpts(
width='1000px',
height='600px',
bg_color="white"
)
)
bar.add_xaxis(cities)
bar.add_yaxis("最高温度",high_temperatures,label_opts=opts.LabelOpts(formatter="{c}℃"))
bar.add_yaxis("最低温度",low_temperatures,label_opts=opts.LabelOpts(formatter="{c}℃"))
bar.add_yaxis("温度差",temperature_diffs,label_opts=opts.LabelOpts(formatter="{c}℃&#