函数
函数定义
- 函数以def关键词开头,后接函数名和圆括号()。
- 函数执行的代码以冒号起始,并且缩进。
- return [表达式] 结束函数,选择性地返回一个值给调用方。不带表达式的return相当于返回None。
def functionname (parameters):
"函数文档字符串"
functionsuite
return [expression]
函数调用
【例子】
def add(a, b):
return a + b
def print_f(obj):
print(str(obj))
print(add(4, 5))
print_f("ok")
9
ok
函数文档
【例子】
def add(a, b):
"加法器文档"
return a + b
print(add.__doc__)
加法器文档
函数参数
Python 的函数具有非常灵活多样的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。从简到繁的参数形态如下:
-
位置参数 (positional argument)
def functionname(arg1): "函数文档字符串" functionsuite return [expression]
arg1 - 位置参数 ,这些参数在调用函数 (call function) 时位置要固定。
【例子】
def sub(a, b): return a - b print(sub(4, 3)) print(sub(3, 4))
1
-1 -
默认参数 (default argument)
def functionname(arg1, arg2=v): "函数文档字符串" functionsuite return [expression]
arg2 = v - 默认参数 = 默认值,调用函数时,默认参数的值如果没有传入,则被认为是默认值。
默认参数一定要放在位置参数 后面,不然程序会报错。
【例子】def sub(a, b=2): return a - b print(sub(4, 3)) print(sub(4))
1
2 -
可变参数 (variable argument)
顾名思义,可变参数就是传入的参数个数是可变的,可以是 0, 1, 2 到任意个,是不定长的参数。def functionname(arg1, arg2=v, *args): "函数文档字符串" functionsuite return [expression]
args - 可变参数,可以是从零个到任意个,自动组装成元组。
加了星号()的变量名会存放所有未命名的变量参数。
【例子】def sub(arg1, arg2=2, *args): return arg1 + arg2 + sum(args) print(sub(4)) print(sub(4, 2)) print(sub(4, 2, 3, 4, 5))
6
6
18
可变参数允许传入零个到任意个参数,它们在函数调用时自动组装为一个元组 (tuple)。 -
关键字参数 (keyword argument)
def functionname(arg1, arg2=v, args, **kw): "函数文档字符串" functionsuite return [expression]
**kw - 关键字参数,可以是从零个到任意个,自动组装成字典。
【例子】def calculate(arg1, arg2=2, **kws): if kws['op'] == '+': return arg1 + arg2 elif kws['op'] == '-': return arg1 - arg2; elif kws['op'] == '*': return arg1 * arg2; elif kws['op'] == '/': return arg1 / arg2 print(calculate(4,op='+')) print(calculate(4,op='-')) print(calculate(4,op='*')) print(calculate(4,op='/'))
6
2
8
2.0
关键字参数允许传入零个到任意个参数,它们在函数内部自动组装为一个字典 (dict)。 -
命名关键字参数 (name keyword argument)
def functionname(arg1, arg2=v, args, *, nkw, *kw): "函数文档字符串" functionsuite return [expression]
*, nkw - 命名关键字参数,用户想要输入的关键字参数,定义方式是在nkw 前面加个分隔符 *。
如果要限制关键字参数的名字,就可以用「命名关键字参数」
使用命名关键字参数时,要特别注意不能缺少参数名。def printinfo(arg1, *, nkw, **kwargs): print(arg1) print(nkw) print(kwargs) printinfo(1, nkw=10, a=1, b=3) printinfo(1)
第一个函数调用会打印,第二个会异常,没有使用参数名nkw
-
参数组合
在 Python 中定义函数,可以用位置参数、默认参数、可变参数、命名关键字参数和关键字参数,这 5 种参数中的 4 个都可以一起使用,但是注意,参数定义的顺序必须是:- 位置参数、默认参数、可变参数和关键字参数。
- 位置参数、默认参数、命名关键字参数和关键字参数。
要注意定义可变参数和关键字参数的语法: - *args 是可变参数,args 接收的是一个 tuple
- **kw 是关键字参数,kw 接收的是一个 dict
命名关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。定义命名关键字参数不要忘了写分隔符 *,否则定义的是位置参数。
函数返回值
【例子】
def add(a, b):
return a + b
def calculate(a, b):
return a + b, a - b, a * b, a / b
def print_f(obj):
print(obj)
print(add(3, 4))
print(calculate(4, 3))
print(print_f("ok"))
7
(7, 1, 12, 1.3333333333333333)
ok
None
变量作用域
- Python 中,程序的变量并不是在哪个位置都可以访问的,访问权限决定于这个变量是在哪里赋值的。
- 定义在函数内部的变量拥有局部作用域,该变量称为局部变量。
- 定义在函数外部的变量拥有全局作用域,该变量称为全局变量。
- 局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。
- 当内部作用域想修改外部作用域的变量时,就要用到global和nonlocal关键字了。
【例子】
c = 9
def add(a, b):
c = 5
return a + b + c
def change_c():
global c
c = 8
print(c)
print(add(2, 3))
change_c()
print(c)
9
10
8
内嵌函数
函数内定义函数
【例子】
def outer():
def inner():
print("inner func")
inner()
print("outer func")
outer()
inner func
outer func
闭包
- 是函数式编程的一个重要的语法结构,是一种特殊的内嵌函数。
- 如果在一个内部函数里对外层非全局作用域的变量进行引用,那么内部函数就被认为是闭包。
- 通过闭包可以访问外层非全局作用域的变量,这个作用域称为 闭包作用域。
- 如果要修改闭包作用域中的变量则需要 nonlocal 关键字
【例子】
def outer(a):
c = 8
a += 3
def inner(b):
nonlocal c
c = 4
return a + b + c
return inner
print(outer(5)(6))
18
此处第一个参数5是传递给outer的参数a,第二个参数6是传递给inner的参数,调用outer函数是返回了一个函数outer(5),然后又调用了inner函数outer(5)(6).
闭包的返回值通常是函数
递归
- 如果一个函数在内部调用自身本身,这个函数就是递归函数。
- 递归的层数可设置,Python默认递归层数为 100
【例子】斐波那契数列 f(n)=f(n-1)+f(n-2), f(0)=0 f(1)=1
import sys
sys.setrecursionlimit(200)
def fibo(n):
if n <= 1:
return n
return fibo(n - 1) + fibo(n - 2)
print(fibo(10))
55
lambda表达式
匿名函数定义
Python 里有两类函数:
第一类:用 def 关键词定义的正规函数
第二类:用 lambda 关键词定义的匿名函数
Python 使用 lambda 关键词来创建匿名函数,而非def关键词,它没有函数名,其语法结构如下:
lambda argument_list: expression
- lambda - 定义匿名函数的关键词。
- argument_list - 函数参数,它们可以是位置参数、默认参数、关键字参数,和正规函数里的参数类型一样。
- : 冒号,在函数参数和表达式中间要加个冒号。
- expression - 只是一个表达式,输入函数参数,输出一些值。
- expression 中没有 return 语句,因为 lambda 不需要它来返回,表达式本身结果就是返回值。
- 匿名函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数。
【例子】
add = lambda a, b: a + b
print(add(3, 5))
sqr = lambda a: a * a
print([sqr(a) for a in range(10)])
f = lambda a, b: sqr(a) + sqr(b)
print(f(3, 4))
8
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
25
匿名函数应用
函数式编程 是指代码中每一块都是不可变的,都由纯函数的形式组成。这里的纯函数,是指函数本身相互独立、互不影响,对于相同的输入,总会有相同的输出,没有任何副作用。
【例子】非函数式编程,会改变输入本身,有隐患
def f(a=[]):
a[0] += 2
return a * 2
a = [1, 2, 3]
print(f(a))
print(a)
[3, 2, 3, 3, 2, 3]
[3, 2, 3]
【例子】函数式编程,不改变输入本身。
def f(a=[]):
b=a.copy()
b[0] += 2
return b * 2
a = [1, 2, 3]
print(f(a))
print(a)
[3, 2, 3, 3, 2, 3]
[3, 2, 3]
匿名函数 常常应用于函数式编程的高阶函数 (high-order function)中,主要有两种形式:
- 参数是函数 (filter, map)
- 返回值是函数 (closure)
- filter(function, iterable) 过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。
- map(function, *iterables) 根据提供的函数对指定序列做映射。
【例子】
f1 = lambda a: a % 2 == 0
filter1 = filter(f1, [1, 2, 3, 4, 5, 6, 7])
print(list(filter1))
print(list(filter(lambda a: a % 2 == 0, [1, 2, 3, 4, 5, 6, 7])))
f2 = lambda a: 2 * a * a + 3 * a + 1
map1 = map(f2, [1, 2, 3, 4, 5, 6, 7])
print(list(map1))
print(list(map(lambda a: 2 * a * a + 3 * a + 1, [1, 2, 3, 4, 5, 6, 7])))
[2, 4, 6]
[2, 4, 6]
[6, 15, 28, 45, 66, 91, 120]
[6, 15, 28, 45, 66, 91, 120]
类与对象
对象 = 属性 + 方法
对象是类的实例。换句话说,类主要定义对象的结构,然后我们以类为模板创建对象。类不但包含方法定义,而且还包含所有实例共享的数据。
我们可以使用关键字 class 定义 Python 类,关键字后面紧跟类的名称、分号和类的实现。
面相对象三大特征:
- 封装:信息隐蔽技术
【例子】
class Person:
def __init__(self, name="lili", age=10):
self.name = name
self.age = age
def eat(self, food="苹果"):
print("%d岁的%s在吃%s" % (self.age, self.name, food))
p1 = Person()
p1.eat()
p2 = Person("xiaoming", 11)
p2.eat("香蕉")
10岁的lili在吃苹果
11岁的xiaoming在吃香蕉
- 继承:子类自动共享父类之间数据和方法的机制
【例子】
class Person:
def __init__(self, name="lili", age=10):
self.name = name
self.age = age
def eat(self, food="苹果"):
print("%d岁的%s在吃%s" % (self.age, self.name, food))
class Student(Person):
def study(self, book="课本"):
print("年龄为%d岁的%s在学%s" % (self.age, self.name, book))
p1 = Student()
p1.eat()
p1.study("历史")
10岁的lili在吃苹果
年龄为10岁的lili在学历史
- 多态:不同对象对同一方法响应不同的行动
【例子】
class Person:
def __init__(self, name="lili", age=10):
self.name = name
self.age = age
def eat(self, food="苹果"):
print("%d岁的%s在吃%s" % (self.age, self.name, food))
class Student(Person):
pass
class Employee(Person):
def eat(self, food="苹果"):
print("员工%s在享受%s的美味" % (self.name, food))
def person_eat(p: Person):
p.eat()
person_eat(Student())
person_eat(Employee("dali"))
10岁的lili在吃苹果
员工dali在享受苹果的美味
self解释
Python 的 self 相当于 C++ 的 this 指针。
类的方法与普通的函数只有一个特别的区别 —— 它们必须有一个额外的第一个参数名称(对应于该实例,即该对象本身),按照惯例它的名称是 self。在调用方法时,我们无需明确提供与参数 self 相对应的参数。
具体用法见上下文。
类魔法方法
如果你的对象实现了这些方法中的某一个,那么这个方法就会在特殊的情况下被 Python 所调用,而这一切都是自动发生的…
类有一个名为__init__(self[, param1, param2…])的魔法方法,该方法在类实例化时会自动调用。
例如上文的Person类的__init__(self, name=“lili”, age=10)方法。此为构造方法。
公有和私有
在 Python 中定义私有变量只需要在变量名或函数名前加上“__”两个下划线,那么这个函数或变量就会为私有的了。
例如上文的Person类中的_name,_age就是为私有变量,不能对象直接在外部访问,访问会报错
公有变量就是对象可以在外部可访问的。
【例子】
class Person:
_name = None
_age = 0
def __init__(self, name="lili", age=10):
self._name = name
self._age = age
def eat(self, food="苹果"):
print("%d岁的%s在吃%s" % (self._age, self._name, food))
class Student(Person):
_class = "1班"
_stu_no = "001"
def study(self, book="课本"):
print("在%s学号为%s且年龄为%d岁的%s在学%s" % (self._class, self._stu_no, self._age, self._name, book))
class Employee(Person):
no = "001"
def eat(self, food="苹果"):
print("员工号为%s的%s在享受%s的美味" % (self.no, self._name, food))
p1 = Employee(name="xiaoming", age=18)
print("员工编号为:%s"% p1.no)
员工编号为:001
继承
Python 同样支持类的继承,派生类的定义如下所示:
class DerivedClassName(BaseClassName):
statement-1
.
.
.
statement-N
BaseClassName(基类名)必须与派生类定义在一个作用域内。除了类,还可以用表达式,基类定义在另一个模块中时这一点非常有用:
class DerivedClassName(modname.BaseClassName):
statement-1
.
.
.
statement-N
【例子】如果子类中定义与父类同名的方法或属性,则会自动覆盖父类对应的方法或属性。
示例见上文Person是父类,Student,Employee是子类,Employee同名的方法eat 就覆盖了父类的eat方法
【例子】构造方法覆盖
class Person:
_name = None
_age = 0
def __init__(self, name="lili", age=10):
self._name = name
self._age = age
def eat(self, food="苹果"):
print("%d岁的%s在吃%s" % (self._age, self._name, food))
class Student(Person):
_class = "1班"
_stu_no = "001"
def __init__(self):
super().__init__()
def study(self, book="课本"):
print("在%s学号为%s且年龄为%d岁的%s在学%s" % (self._class, self._stu_no, self._age, self._name, book))
class Employee(Person):
no = "001"
def __init__(self, name, age):
name = "员工" + name
Person.__init__(self, name, age)
def eat(self, food="苹果"):
print("员工号为%s的%s在享受%s的美味" % (self.no, self._name, food))
p1 = Employee(name="xiaoming", age=18)
p1.eat()
p2=Student()
p2.eat()
员工号为001的员工xiaoming在享受苹果的美味
10岁的lili在吃苹果
super().init() 默认构造方法
Person.init(self, name, age)父类构造方法
Python支持多继承,但是我们不使用多继承。可以在设计接口的时候使用多实现。
【例子】
class Study:
def read(self, book):
pass
class Dinner:
def eat(self):
pass
class Student(Study, Dinner):
def eat(self):
print("吃简单的饭")
def read(self, book):
print("为了学习,读%s" % book)
class Employee(Study, Dinner):
def eat(self):
print("享用豪华大餐")
def read(self, book):
print("为了提高自身,开始读%s" % book)
def read(stu: Study):
stu.read("春秋")
def eat(di: Dinner):
di.eat()
stu1 = Student()
emp = Employee()
read(stu1)
eat(stu1)
read(emp)
eat(emp)
为了学习,读春秋
吃简单的饭
为了提高自身,开始读春秋
享用豪华大餐
类、类对象和实例对象
类对象:创建一个类,其实也是一个对象也在内存开辟了一块空间,称为类对象,类对象只有一个。
class A(object):
pass
实例对象:就是通过实例化类创建的对象,称为实例对象,实例对象可以有多个。
class A(object):
pass
# 实例化对象 a、b、c都属于实例对象。
a = A()
b = A()
c = A()
类属性:类里面方法外面定义的变量称为类属性。类属性所属于类对象并且多个实例对象之间共享同一个类属性,说白了就是类属性所有的通过该类实例化的对象都能共享。
实例属性:实例属性和具体的某个实例对象有关系,并且一个实例对象和另外一个实例对象是不共享属性的,说白了实例属性只能在自己的对象里面使用,其他的对象不能直接使用,因为self是谁调用,它的值就属于该对象。
class A:
no = 1 # 类属性
def __init__(self):
self.name = 'name1' # 实例属性
def set_name(self, name):
self.name = name
def test(self):
print("name is %s,no is %d" % (self.name,self.no))
a = A()
A.no = 2
a.set_name("namea")
a.test()
b = A()
b.test()
name is namea,no is 2
name is name1,no is 2
注意:属性与方法名相同,属性会覆盖方法。
绑定
Python 严格要求方法需要有实例才能被调用,这种限制其实就是 Python 所谓的绑定概念。
Python 对象的数据属性通常存储在名为.__ dict__的字典中,我们可以直接访问__dict__,或利用 Python 的内置函数vars()获取.__ dict__。
【例子】
class A:
no = 1
def __init__(self):
self.name = 'name1'
def set_name(self, name):
self.name = name
def test(self):
print("name is %s,no is %d" % (self.name,self.no))
print(A.__dict__)
print(vars(A))
a=A()
a.set_name("namea")
print(a.__dict__)
print(vars(a))
{‘module’: ‘main’, ‘no’: 1, ‘init’: <function A.init at 0x104aac4c0>, ‘set_name’: <function A.set_name at 0x104aac550>, ‘test’: <function A.test at 0x104aac5e0>, ‘dict’: <attribute ‘dict’ of ‘A’ objects>, ‘weakref’: <attribute ‘weakref’ of ‘A’ objects>, ‘doc’: None}
{‘module’: ‘main’, ‘no’: 1, ‘init’: <function A.init at 0x104aac4c0>, ‘set_name’: <function A.set_name at 0x104aac550>, ‘test’: <function A.test at 0x104aac5e0>, ‘dict’: <attribute ‘dict’ of ‘A’ objects>, ‘weakref’: <attribute ‘weakref’ of ‘A’ objects>, ‘doc’: None}
{‘name’: ‘namea’}
{‘name’: ‘namea’}
类绑定和对象绑定的区别
内置函数
- issubclass(class, classinfo) 方法用于判断参数 class 是否是类型参数 classinfo 的子类。
- 一个类被认为是其自身的子类。
- classinfo可以是类对象的元组,只要class是其中任何一个候选类的子类,则返回True。
- isinstance(object, classinfo) 方法用于判断一个对象是否是一个已知的类型,类似type()。
- type()不会认为子类是一种父类类型,不考虑继承关系。
- isinstance()会认为子类是一种父类类型,考虑继承关系。
- hasattr(object, name)用于判断对象是否包含对应的属性。
- getattr(object, name[, default])用于返回一个对象属性值。
- setattr(object, name, value)对应函数 getattr(),用于设置属性值,该属性不一定是存在的。
- delattr(object, name)用于删除属性。
class A:
n=10
pass
class B(A):
pass
print(issubclass(A, B))
print(issubclass(B, A))
print(issubclass(B, B))
print(issubclass(A, object))
a = A()
b = B()
print(isinstance(a, A))
print(isinstance(b, A))
print(isinstance(a, B))
print(type(A) == A)
print(type(a) == A)
print(hasattr(a,'n'))
print(hasattr(a,'c'))
print(getattr(a,"n"))
setattr(a,"m",9)
print(a.m)
delattr(a,"m")
# print("a.m=",a.m)
False
True
True
True
True
True
False
False
True
True
False
10
9
魔法方法
魔法方法总是被双下划线包围,例如__init__。
魔法方法的“魔力”体现在它们总能够在适当的时候被自动调用。
魔法方法的第一个参数应为cls(类方法) 或者self(实例方法)。
cls:代表一个类的名称
self:代表一个实例对象的名称
基本的魔法方法
- init(self[, …]) 构造器,当一个实例被创建的时候调用的初始化方法
- new(cls[, …]) 在一个对象实例化的时候所调用的第一个方法,在调用__init__初始化前,先调用__new__。
- new__至少要有一个参数cls,代表要实例化的类,此参数在实例化时由 Python 解释器自动提供,后面的参数直接传递给__init。
- new__对当前类进行了实例化,并将实例返回,传给__init__的self。但是,执行了__new,并不一定会进入__init__,只有__new__返回了,当前类cls的实例,当前类的__init__才会进入。
- 若__new__没有正确返回当前类cls的实例,那__init__是不会被调用的,即使是父类的实例也不行,将没有__init__被调用。
【例子】
class A:
def __init__(self):
print("__init__A")
def __new__(cls, *args, **kwargs):
print("__new__A")
class B:
def __init__(self):
print("__init__B")
def __new__(cls, *args, **kwargs):
print("__new__B")
return object.__new__(cls)
class C(A):
def __init__(self):
print("__init__C")
A()
B()
C()
__new__A
__new__B
__init__B
__new__A
【例子】单例实现
class A:
_instance = None
def __init__(self):
print("__init__A")
def __new__(cls, *args, **kwargs):
print("__new__A")
if cls._instance is None:
cls._instance = object.__new__(cls)
return cls._instance
a = A()
b = A()
print(id(a))
print(id(b))
__new__A
__init__A
__new__A
__init__A
4305735584
4305735584
- __new__方法主要是当你继承一些不可变的 class 时(比如int, str, tuple), 提供给你一个自定义这些类的实例化过程的途径。
- del(self) 析构器,当一个对象将要被系统回收之时调用的方法。
Python 采用自动引用计数(ARC)方式来回收对象所占用的空间,当程序中有一个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 1;当程序中有两个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 2,依此类推,如果一个对象的引用计数变成了 0,则说明程序中不再有变量引用该对象,表明程序不再需要该对象,因此 Python 就会回收该对象。
大部分时候,Python 的 ARC 都能准确、高效地回收系统中的每个对象。但如果系统中出现循环引用的情况,比如对象 a 持有一个实例变量引用对象 b,而对象 b 又持有一个实例变量引用对象 a,此时两个对象的引用计数都是 1,而实际上程序已经不再有变量引用它们,系统应该回收它们,此时 Python 的垃圾回收器就可能没那么快,要等专门的循环垃圾回收器(Cyclic Garbage Collector)来检测并回收这种引用循环。
【例子】
class A:
def __new__(cls, *args, **kwargs):
print("__new__")
return super().__new__(cls)
def __del__(self):
print("__del__")
a=A(4)
print(a)
new
<main.A object at 0x104453640>
del
-
str(self):
- 当你打印一个对象的时候,触发__str__
- 当你使用%s格式化的时候,触发__str__
- str强转数据类型的时候,触发__str__
-
repr(self):
- repr是str的备胎
- 有__str__的时候执行__str__,没有实现__str__的时候,执行__repr__
- repr(obj)内置函数对应的结果是__repr__的返回值
- 当你使用%r格式化的时候 触发__repr__
【例子】
class A:
def __str__(self):
print("A __str__")
return "A"
def __repr__(self):
print("A __repr__")
return "A __repr__"
class B:
def __repr__(self):
print("B __repr__")
return "B __repr__"
a = A()
print(a)
b = B()
print(b)
A str
A
B repr
B repr
算术运算符魔法方法
类型工厂函数,指的是“不通过类而是通过函数来创建对象”。
例如 list(seq),tuple(seq),int()
i1=int('4')
print(i1,type(i1))
f1=float('4.5')
print(f1,type(f1))
s1=str("world")
print(s1,type(s1))
print(len(s1))
lst=list("world")
print(id(lst))
print(lst,type(lst))
print(type(int))
print(type(float))
print(type(str))
print(type(list))
print(type(len))
print(type(id))
4 <class ‘int’>
4.5 <class ‘float’>
world <class ‘str’>
5
4375159488
[‘w’, ‘o’, ‘r’, ‘l’, ‘d’] <class ‘list’>
<class ‘type’>
<class ‘type’>
<class ‘type’>
<class ‘type’>
<class ‘builtin_function_or_method’>
<class ‘builtin_function_or_method’>
实现对象之间的算数运算,运算符包括:
+加法 __add__(self, other)
- 减法 __sub__(self, other)
* 乘法 __mul__(self, other)
/ 除法 __truediv__(self, other)
// 整除 __floordiv__(self, other)
% 余 __mod__(self, other)
** 指数 __pow__(self, other[, module])
还有
& 与 __and__(self, other)
| 或 __or__(self, other)
^ 异或 __xor__(self, other)
<< 左移 __lshift__(self, other)
>> 右移 __rshift__(self, other)
还有更多其它的运算符或者工厂函数的魔法方法,可以去看int 类型的源码。
【例子】实现一个向量的算数运算。
class Vector:
def __init__(self, value=[]):
self.value = value
def __add__(self, other):
result = []
for i in range(len(self.value)):
result.append(self.value[i] + other.value[i])
return Vector(result)
def __sub__(self, other):
result = []
for i in range(len(self.value)):
result.append(self.value[i] - other.value[i])
return Vector(result)
def __mul__(self, other):
result = []
for i in range(len(self.value)):
result.append(self.value[i] * other.value[i])
return Vector(result)
def __truediv__(self, other):
result = []
for i in range(len(self.value)):
result.append(self.value[i] / other.value[i])
return Vector(result)
def __floordiv__(self, other):
result = []
for i in range(len(self.value)):
result.append(self.value[i] // other.value[i])
return Vector(result)
def __mod__(self, other):
result = []
for i in range(len(self.value)):
result.append(self.value[i] % other.value[i])
return Vector(result)
def __pow__(self, power, modulo=None):
result = []
for i in range(len(self.value)):
result.append(self.value[i] ** power)
return Vector(result)
def __and__(self, other):
result = []
for i in range(len(self.value)):
result.append(self.value[i] & other.value[i])
return Vector(result)
def __or__(self, other):
result = []
for i in range(len(self.value)):
result.append(self.value[i] | other.value[i])
return Vector(result)
def __xor__(self, other):
result = []
for i in range(len(self.value)):
result.append(self.value[i] ^ other.value[i])
return Vector(result)
def __lshift__(self, other):
return Vector(self.value[other:len(self.value)])
def __rshift__(self, other):
return Vector(self.value[0:len(self.value) - other])
def __str__(self):
return str(self.value)
def __len__(self):
return len(self.value)
v1 = Vector([1, 2, 3])
v2 = Vector([4, 5, 6])
print(v1 + v2)
print(v2 - v1)
print(v1 * v2)
print(v2 / v1)
print(v2 // v1)
print(v2 % v1)
print(v1 & v2)
print(v1 | v2)
print(v1 ^ v2)
print(v1 << 1)
print(v2 >> 1)
print(len(v1))
print(len(v2))
[5, 7, 9]
[3, 3, 3]
[4, 10, 18]
[4.0, 2.5, 2.0]
[4, 2, 2]
[0, 1, 0]
[0, 0, 2]
[5, 7, 7]
[5, 7, 5]
[2, 3]
[4, 5]
3
3
反算术运算符
上文是运算符实现,大是正的算数运算符,也就是左侧的计算右侧的。
反运算魔方方法,与算术运算符保持一一对应,不同之处就是反运算的魔法方法多了一个“r”。当文件左操作不支持相应的操作时被调用。
radd(self, other)定义加法的行为:+
rsub(self, other)定义减法的行为:-
rmul(self, other)定义乘法的行为:*
rtruediv(self, other)定义真除法的行为:/
rfloordiv(self, other)定义整数除法的行为://
rmod(self, other) 定义取模算法的行为:%
rdivmod(self, other)定义当被 divmod() 调用时的行为
rpow(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
rlshift(self, other)定义按位左移位的行为:<<
rrshift(self, other)定义按位右移位的行为:>>
rand(self, other)定义按位与操作的行为:&
rxor(self, other)定义按位异或操作的行为:^
ror(self, other)定义按位或操作的行为:|
用法和上文一致
【例子】
class A(str):
def __rsub__(self, other):
return other.replace(self, '')
print(A("ab") + "abc")
print("abc" - A("ab"))
ababc
c
增量赋值运算符
iadd(self, other)定义赋值加法的行为:+=
isub(self, other)定义赋值减法的行为:-=
imul(self, other)定义赋值乘法的行为:*=
itruediv(self, other)定义赋值真除法的行为:/=
ifloordiv(self, other)定义赋值整数除法的行为://=
imod(self, other)定义赋值取模算法的行为:%=
ipow(self, other[, modulo])定义赋值幂运算的行为:**=
ilshift(self, other)定义赋值按位左移位的行为:<<=
irshift(self, other)定义赋值按位右移位的行为:>>=
iand(self, other)定义赋值按位与操作的行为:&=
ixor(self, other)定义赋值按位异或操作的行为:^=
ior(self, other)定义赋值按位或操作的行为:|=
一元运算符
neg(self)定义正号的行为:+x
pos(self)定义负号的行为:-x
abs(self)定义当被abs()调用时的行为
invert(self)定义按位求反的行为:~x
属性访问
getattr(self, name): 定义当用户试图获取一个不存在的属性时的行为。
getattribute(self, name):定义当该类的属性被访问时的行为(先调用该方法,查看是否存在该属性,若不存在,接着去调用__getattr__)。
setattr(self, name, value):定义当一个属性被设置时的行为。
delattr(self, name):定义当一个属性被删除时的行为。
【例子】
class C:
def __getattribute__(self, item):
print('__getattribute__')
return super().__getattribute__(item)
def __getattr__(self, item):
print('__getattr__')
def __setattr__(self, key, value):
print('__setattr__')
super().__setattr__(key, value)
def __delattr__(self, item):
print('__delattr__')
super().__delattr__(item)
c = C()
c.x
# __getattribute__
# __getattr__
c.x = 1
# __setattr__
del c.x
# __delattr__
getattribute
getattr
setattr
delattr
描述符
描述符就是将某种特殊类型的类的实例指派给另一个类的属性。
get(self, instance, owner)用于访问属性,它返回属性的值。
set(self, instance, value)将在属性分配操作中调用,不返回任何内容。
del(self, instance)控制删除操作,不返回任何内容。
定制序列
- 如果说你希望定制的容器是不可变的话,你只需要定义__len__()和__getitem__()方法。
- 如果你希望定制的容器是可变的话,除了__len__()和__getitem__()方法,你还需要定义__setitem__()和__delitem__()两个方法。
例如 list是可变的,str是不可变的。
可以实现定制可变的类和不可变类
【例子】
class A:
def __init__(self, ):
self.value = [data * 2 + 1 for data in [1, 2, 3, 4]]
def __getitem__(self, item):
return self.value
def __len__(self):
return len(self.value)
def __iter__(self):
return self.value.__iter__()
def __str__(self):
return str(self.value)
class B:
def __init__(self, ):
self.value = [data * 3 + 2 for data in [1, 2, 3, 4]]
def __getitem__(self, item):
return self.value
def __len__(self):
return len(self.value)
def __setitem__(self, key, value):
self.value[key] = value
def __delitem__(self, key):
del self.value[key]
def __iter__(self):
return self.value.__iter__()
def __str__(self):
return str(self.value)
a = A()
print(len(a))
# del a[0]# 会报错
print(a)
for item in a:
print(item)
b = B()
print(b)
b[0] = 100
print(b)
del b[2]
print(b)
4
[3, 5, 7, 9]
3
5
7
9
[5, 8, 11, 14]
[100, 8, 11, 14]
[100, 8, 14]
迭代器
迭代是 Python 最强大的功能之一,是访问集合元素的一种方式。
迭代器是一个可以记住遍历的位置的对象。
迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。
迭代器只能往前不会后退。
字符串,列表或元组对象都可用于创建迭代器:
迭代器有两个基本的方法:iter() 和 next()。
iter(object) 函数用来生成迭代器。
next(iterator[, default]) 返回迭代器的下一个项目。
iterator – 可迭代对象
default – 可选,用于设置在没有下一个元素时返回该默认值,如果不设置,又没有下一个元素则会触发 StopIteration 异常。
iter(self)定义当迭代容器中的元素的行为,返回一个特殊的迭代器对象, 这个迭代器对象实现了 next() 方法并通过 StopIteration 异常标识迭代的完成。
next() 返回下一个迭代器对象。
StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 next() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。
for …in .就是迭代器的遍历。需要实现函数。iter(self)
class A:
def __init__(self, ):
self.value = [data * 2 + 1 for data in [1, 2, 3, 4]]
self.step = 0
def __getitem__(self, item):
return self.value
def __len__(self):
return len(self.value)
def __next__(self):
if self.step > len(self.value) - 1:
self.step=0
raise StopIteration
try:
result = self.value[self.step]
return result
finally:
self.step += 1
def __iter__(self):
return self
def __str__(self):
return str(self.value)
a = A()
print(len(a))
print(a)
for item in a:
print(item)
print("")
it = iter(a)
while True:
try:
print(next(it))
except StopIteration:
break
4
[3, 5, 7, 9]
3
5
7
9
3
5
7
9