简介
hbase是bigtable的开源java版本。是建立在hdfs之上,提供高可靠性、高性能、列存储、可伸缩、实时读写nosql的数据库系统。
它介于nosql和RDBMS之间,仅能通过主键(row key)和主键的range来检索数据,仅支持单行事务(可通过hive支持来实现多表join等复杂操作)。
主要用来存储结构化和半结构化的松散数据。
Hbase查询数据功能很简单,不支持join等复杂操作,不支持复杂的事务(行级的事务)
Hbase中支持的数据类型:byte[]
与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
HBase中的表一般有这样的特点:
大:一个表可以有上十亿行,上百万列
面向列:面向列(族)的存储和权限控制,列(族)独立检索。
稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。
传统数据表
HBase的发展历程
HBase的原型是Google的BigTable论文,受到了该论文思想的启发,目前作为Hadoop的子项目来开发维护,用于支持结构化的数据存储。
官方网站:http://hbase.apache.org
- 2006年Google发表BigTable白皮书
- 2006年开始开发HBase
- 2008 HBase成为了 Hadoop的子项目
- 2010年HBase成为Apache顶级项目
HBase与Hadoop的关系
1、HDFS
- 为分布式存储提供文件系统
- 针对存储大尺寸的文件进行优化,不适用对HDFS上的文件进行随机读写
- 直接使用文件
- 数据模型不灵活
- 使用文件系统和处理框架
- 优化一次写入,多次读取的方式
2、HBase - 提供表状的面向列的数据存储
- 针对表状数据的随机读写进行优化
- 使用key-value操作数据
- 提供灵活的数据模型
- 使用表状存储,支持MapReduce,依赖HDFS
- 优化了多次读,以及多次写
3、RDBMS与HBase的对比
1、关系型数据库
结构: - 数据库以表的形式存在
- 支持FAT、NTFS、EXT、文件系统
- 使用Commit log存储日志
- 参考系统是坐标系统
- 使用主键(PK)
- 支持分区
- 使用行、列、单元格
功能: - 支持向上扩展
- 使用SQL查询
- 面向行,即每一行都是一个连续单元
- 数据总量依赖于服务器配置
- 具有ACID支持
- 适合结构化数据
- 传统关系型数据库一般都是中心化的
- 支持事务
- 支持Join
2、HBase
结构: - 数据库以region的形式存在
- 支持HDFS文件系统
- 使用WAL(Write-Ahead Logs)存储日志
- 参考系统是Zookeeper
- 使用行键(row key)
- 支持分片
- 使用行、列、列族和单元格
功能: - 支持向外扩展
- 使用API和MapReduce来访问HBase表数据
- 面向列,即每一列都是一个连续的单元
- 数据总量不依赖具体某台机器,而取决于机器数量
- HBase不支持ACID(Atomicity、Consistency、Isolation、Durability)
- 适合结构化数据和非结构化数据
- 一般都是分布式的
- HBase不支持事务
- 不支持SQL
- 不支持Join
4、HBase特征简要
1)海量存储
Hbase适合存储PB级别的海量数据,在PB级别的数据以及采用廉价PC存储的情况下,能在几十到百毫秒内返回数据。这与Hbase的极易扩展性息息相关。正式因为Hbase良好的扩展性,才为海量数据的存储提供了便利。
2)列式存储
这里的列式存储其实说的是列族存储,Hbase是根据列族来存储数据的。列族下面可以有非常多的列ÿ