自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(296)
  • 资源 (4)
  • 论坛 (2)
  • 收藏
  • 关注

原创 软件项目管理经验、CMMI5学习与应用实践专题集锦

本文整理本人近些年来关于软件项目管理经验、CMMI5学习与应用实践博客集锦,方便分享与交流讨论。

2021-02-08 21:46:11 63

原创 数据驱动、AI驱动工业化数据分析应用实践集锦(上)

本文整理本人近5年来关于大数据、人工智能、数据分析等学习与应用实践博客集锦,内容分为初始大数据人工智能、数据采集与处理、特征工程、算法实践与预测分析、数据可视化、大数据分析技术架构等六大类,方便分享与交流讨论。

2021-02-08 09:35:27 82

原创 通过客户流失预测案例感悟数据分析设计方法思考——数据驱动、AI驱动

通过客户流失预测案例感悟数据分析设计方法,正如Gartner于2020年给出数据分析领域的技术趋势,更智能、更高速、更负责的AI,凸显新技术引领业务,数据驱动、AI驱动,以站在高纬度上的预测结果为顶层设计,倒逼数据诊断分析、描述性分析,使业务数据分析线条更清晰,目的更明确。对于大数据分析产品设计,可以采用倒推逻辑方法,也就是在业务机理和需求的范围内,基于现有的数据及仿真数据,使用大数据人工智能技术预测出结论。我们可以再基于预测结论及其过程的输出,采样自顶向下,分类、分层方法设计

2021-02-01 17:28:26 811 3

原创 Python实现连续图片、多图片多维组合既数据增维和调整维度的案例一则

针对深度学习连续图片、多图片组合既数据增维和调整维度需求,例如我们在处理深度学习、深度强化学习输入数据时,经常需要调整数据维度,一般使用 Numpy中stack、appand、resize增加或改变图片/数据维度。

2021-01-23 22:45:40 66

原创 深度强化学习之迷宫DQN(NIPS 2015版)实践笔记——入门提升篇

本文通过2层神经网络、CNN网络实践DQN深度强化学习,以及扩展连续多张图的多维输入实践,深入了解、掌握DQN。

2021-01-23 11:43:25 104

原创 使用强化学习建立下一个最佳活动(或称行动营销)模型【译文初稿】

本文是译自griddynamics英文博客,讲述了使用强化学习算法进行客户行为预测分析,案例中详细介绍了客户管理业务及业务数据与强化学习算法中的state、action映射关系,以及实际应用经验。

2021-01-13 18:59:38 224

原创 强化学习之迷宫Q-Learning实践笔记——入门篇

我们以走迷宫小游戏为例开始学习深度学习,迷宫样例原型来自“莫烦PYTHON”,系统的梳理强化学习和Q-learning基础知识,并结合代码实践跟踪行为轨迹和Q-Table。

2021-01-12 18:51:54 339

原创 使用Tensorflow卷积神经网络实现数据分析过程实践

通过使用Tensorflow卷积神经网络实现数据分析过程实践,让我们深入思考深度学习能为我们省去了手动构造高阶特征的工作量,节省专业人事的投入。而且简单的卷积神经网络进行数据分析就能达到较好的效果。

2021-01-04 21:44:11 215 3

原创 特征工程与机器学习在加油卡与车辆号牌关系识别业务上的实践

本文简明阐述特征工程与机器学习在加油卡与车辆号牌关系识别业务上开发全过程,重点介绍周期性波形特征工程、聚类数据标注、机器学习预测模型是怎么做的,以及实践分析结果。涉及到Tensorflow BP神经网络,XGBoost与随机森林算法使用案例。通过此案例尽量回答如下问题:机器学习、深度学习算法是如何在软件开发过程中应用的?大数据人工智能开发过程又是什么样的呢?大数据人工智能技术能为业务带来什么呢?

2020-12-29 11:28:03 350 2

原创 大数据人工智能常用特征工程与数据预处理Python实践(2)

以大数据人工智能和Python工具视角,基于常用的特征工程和过程,系统的实践特征提取、特征选择的方法和算法。算法涵盖了统计和机器学习技术,特征提取包括时域特征、派生特征等,特征选择包括特征分析和特征选择,体现了特征工程过程就成为机器学习过程。

2020-12-18 16:23:04 547

原创 大数据人工智能常用特征工程与数据预处理Python实践(1)

基于大数据人工智能和Python工具视角,简明介绍常用的特征工程和过程,在数据清洗中重点实践数据离群值及其工具PyOD,在特征预处理中使用SKlearn重点实践数据归一化与标准化,以及One-Hot编码、数据变换实践。

2020-12-10 11:48:11 633

原创 新入手Vue及ECharts、Tornado,基于vue-element-admin构建大数据可视化21天感想

21天很快过去了,vue前端,特别是经过vue-element-admin整合后的框架,对于我这样的前端了解者,还是比较容易掌握的,剩下就是熟练应用及经验的积累和提升。做为大数据人工智能开发者,是需要一个前端可视化的工具,把咱们自己后台研究成果展现出来,特别是让人能看懂、理解非常重要。

2020-11-16 14:07:34 562

原创 初识SLAM到认识李群学习笔记

本文为学习高翔、张涛等著的《视觉SLAM十四讲》的学习笔记,通过研究视觉SLAM,从三维空间刚体运动引出群论和李代数。

2020-11-15 21:19:46 268

原创 Vue项目发布并部署到Nginx的实践笔记

本文记录vue-element-admin/template项目发布,及部署到windows操作系统山的Nginx服务上的过程,包括遇到的vue-element-admin/template配置与git配合等问题。。

2020-11-09 18:45:52 505

原创 初步整合vue-element-admin和GitDataV两个Vue开源框架方案实现大数据可视化

初步整合vue-element-admin和GitDataV两个Vue开源框架方案,实现满足大数据可视化业务需求。

2020-11-04 17:41:59 1084

原创 Gitblit Server Windows部署实践及HBuilder X与Git结合使用实践笔记

本文主要介绍Git服务端、客户端安装部署、资源仓库创建过程的实践,以及HBuilderX与Git结合使用实践。其中,Git服务端为Gitblit、Git客户端包括Git for windows和ToroiseGit。并分享解决注册Gitblit服务所出现Failed creating java错误,无法启动服务问题,以及FAILED TO WRITE TO REPOSITORIES FOLDER!!问题。

2020-11-03 15:31:46 531

原创 vue-element-admin/template+tornado(pyrestful)前后端分离框架实践(3)——ECharts动态绘制图表及异步加载数据

本项目基于vue-admin-template做二次开发,参照开源作者花裤衩的建议,首先,从迁移vue-admin-admin上组件做集成开始,实践echart动态加载数据,以及界面布局、背景图等修改,并总结了迁移组件过程中遇到的问题。

2020-11-01 13:15:48 715

原创 vue-element-admin/template+tornado(pyrestful)前后端分离框架实践(1)——自定义菜单和仪表盘

本项目基于vue-admin-template做二次开发,参照开源作者花裤衩的建议,首先,从迁移vue-admin-admin上组件做集成开始,实践自定义菜单、仪表盘,并总结了迁移组件过程中遇到的问题。

2020-10-27 21:04:01 749

原创 vue-element-admin/template+tornado(pyrestful)前后端分离框架实践(2)——登录过程与后端python服务

本文较为详细的介绍vue-element-admin/template+tornado(pyrestful)前后端分离框架实践——登录过程与python后台API,分析vue-admin-admin登录过程。后端使用pyrestful插件(基于tornado)python实现,通过使用Fiddler与Postman工具分析,解决了跨域问题和json传参问题,详见代码。

2020-10-26 22:25:38 656

原创 Nginx+Vue.js+Tornado前后端分离架构环境实践(3)

后端使用Python的基于Tornado框架的pyrestful插件,设计发布为REST规范的webservice,并解决跨域服务问题,前端通过axios进行访问rest接口。

2020-10-22 11:17:24 572

原创 Nginx+Vue.js+Tornado前后端分离架构环境实践(2)

以部署Vue-CLI脚手架为核心,涉及到Node.js和Git等。并部署两个vue-element应用管理开源案例,包括:vue-element-admin和基于Vue框架构建的github数据可视化平台。介绍部署前端开发IDE工具HBuilderX与Vue项目结构

2020-10-21 10:23:51 407

原创 Nginx+Vue.js+Tornado前后端分离架构环境实践(1)

基于Python构建前后端分离服务架构实践,其中Web服务为Nginx,前端采用Vue组件,后端Web服务采用Tornado,数据库使用文档型MongoDB,服务协议主要为restfull。

2020-10-15 14:00:09 413

原创 Python Pandas实践 HDF5高效二进制存储

Python大数据分析过程中,使用Pandas实践 HDF5高效二进制存储,以及使用vitables快速浏览H5格式二进制数据。

2020-10-13 10:13:15 587

原创 通过Pandas批量快速读取MongoDB数据经验一则

对于处理读取大批量MongoDB数据的需求,一般采用通过游标分批读取数据,逐批按需求处理数据(数据治理)方案,这样过程思维清晰,缺点是大数据量时速度较慢,而且需要调优游标批量处理量(batch_size),例如我处理读取100万条数据时,耗费我大概5天时间,而直接采用Pandas工具一次性读取MongoDB数据,再后续处理数据,仅仅用时了不到5分钟。

2020-10-12 18:17:41 648

原创 基于Python实践工业大数据相关分析有什么用,能给出什么样的结论?

基于Python实践工业大数据相关分析有什么用,能给出什么样的结论?相关分析是大数据一个最重要的核心思维,本文重点基于Python,以及Pandas工具实践复相关分析算法,并以实际工业大数据场景回答相关分析的用处和结论。

2020-10-02 09:28:37 664

原创 Python Matplotlib绘制渐变色柱状图(bar)并加边框和配置渐变颜色条(colorbar)

模仿相关度热力图,使用Python Matplotlib绘制渐变色柱状图(bar)并加边框和配置渐变颜色条(colorbar)。

2020-09-28 20:58:51 4142

原创 Tensorflow与Keras版本兼容问题一则(Unresolved import LSTM)

Tensorflow与Keras版本兼容问题一则,提示Dense、LSTM等没有导入(Unresolved import LSTM),给出版本对应列表及解决方案。

2020-09-26 09:24:11 494

原创 2020年Gartner新兴技术成熟度曲线,AI持续增强

本文整理多家媒体关于2020年Gartner新兴技术成熟度曲线内容,及时2020年科技趋势预测、中国ICT技术成熟度曲线等,重点围绕AI展开,并附 Gartner的AI技术成熟度曲线等内容,方便读者阅读。

2020-09-24 21:28:03 6380

原创 Tensorflow BP神经网络多输出模型在生产管理中应用实践

本文以某企业组织建设为研究对象,采用大数据神经网络算法中的BP算法, 基于该算法建立了企业组织建设评价模型,最后基于Tensorflow的神经网络开发包实现模型并训练。根据评价结果可评价企业组织建设状况,从而采取相应的预防措施,对今后企业管理有着积极的作用。 .

2020-09-23 18:44:26 1097 1

原创 模糊层次综合分析法Python实践及相关优缺点分析

模糊综合评价法(FCE)是一种根据模糊数学隶属度理论把定性评价转化为定量评价的方法,它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。我们先看模糊综合评价数据表,这是专家(或其他统计方式)对评价打分表投票表决结果统计数据,简单的说就是对需要评价的因素(指标)给出主管或客观的“优、良、一般、较差、非常差”评价。这样,我们能给企业什么样的评价呢?

2020-09-08 21:20:48 2152

原创 AHP(层次分析法)学习笔记及多层权重Python实践

层次分析法(The analytic hierarchy process)简称AHP,它是将与决策有关的因素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。本文为简明AHP学习笔记,并通过Python实践构建多层权重。

2020-09-07 13:22:40 1586

原创 Python开发数据可视化前端工具pyecharts实践

对于大数据分析结果前端可视化展示开发,数据分析者可以使用python开发也能实现,这里推荐方案是使用pyecharts工具实现。

2020-09-02 17:49:42 404

原创 Python Matplotlib绘制多子图准备训练数据和GIF动画实践

我们程序员、设计人员,按需求辛辛苦苦开发出来的统计图形,往往达不到用户的要求,原因一般是表达不全面,也有内容过多而比较乱,真是众口难调。现如今,如果把多张图拼成一张图并标注出当前图块,或者,使用时序模型,那么效果将会更好。这是因为,我在做油罐液位数据分析时,看连续一个月的单日集成图,不懂业务的我都看出其运行周期及效率(进出斜率/余弦对比)情况。

2020-08-18 20:46:54 233 1

原创 XGBoost线性回归工控数据分析实践案例(Sklearn接口篇)

XGB Regressor工控实践。

2020-08-13 22:03:52 1617 2

原创 XGBoost线性回归工控数据分析实践案例(原生篇)

以XGBoost原生模型,开发实际工控预测场景实践,过程中分析出检测值精度、业务标注不完整、安全报警与生产过程相互印证等一系列情况。本文第一篇先给出分析模型,XGBoost回归线性模型,以及涉及到参数说明。较为完整内容详见下篇。

2020-08-10 22:26:44 777

原创 Pandas(数据表)深入应用经验小结(查询、分组、上下行间计算等)

分享以少量代码,站在Pandas肩膀上,实现大批量Mongo数据读取、数据计算处理等实践案例,以及所遇到的坑。

2020-08-08 21:06:24 229

原创 基于Pandas实现皮尔逊相关与余弦相似度在工业大数据分析中的应用实践

获得相关系数有什么用呢?简而言之,有了相关系数,就可以根据回归方程,进行A变量到B变量的估算,这就是所谓的回归分析,因此,相关分析是一种完整的统计研究方法,它贯穿于提出假设,数据研究,数据分析,数据研究的始终。本文基于Pandas实现相关系数及其散点图分析。

2020-08-06 11:49:12 551

原创 机器学习与深度学习开发环境Python3.6(win10-64)全新自主安装过程

Python工作环境有多种安装方法,比如Anaconda,但是本文是以自主方式安装、搭建机器学习与深度学习Python开发环境,以此方式方便深入了解、掌握各种工具包、第三方应用的使用管理,为了避免“重复造轮子”,通过本文总结早期环境部署及开发中经验。

2020-07-19 23:02:36 354 3

原创 深入认识深度神经网络

本文重点是较为全面、系统的对深度神经网络进行通俗解释,包括网络结构、通用近似定理,神经网络模型变宽与变深及加深的问题,深度神经网络模型训练解决方案,如何让你的深度神经网络跑得更快等内容。

2020-06-26 22:23:57 522 4

原创 通过Tensorboard可视化分析神经网络实践

由于神经网络由大量的神经元组成,我们使用TensorFlow编写程序,设计神经网络,其实我们往往也不知道神经网络里头具体细节到底做了什么,要人工调试十分困难,我们经常使用绘图工具(matplotlib),绘制训练过程中的Loss、Acc图。训练神经网络可视化是深度学习神经网络开发、调试、应用中极为重要的手段。有了TensorBoard,可以将TensorFlow程序的执行步骤都显示出来,非常直观。本文使用多层神经网络实践可视化过程。

2020-05-21 12:31:19 237

xgboost-1.2.1-cp36-cp36m-win_amd64.whl 安装包

Python XGboost windows环境安装包 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple xgboost-1.2.1-cp36-cp36m-win_amd64.whl

2020-12-01

scikit_image‑0.13.1‑cp36‑cp36m‑win_amd64.whl

Unofficial Windows Binaries for Python Extension Packages,Scikit-image provides image processing routines for SciPy. 相关版本,详见原地址,https://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy 注意:skimage库需要依赖 numpy+mkl 和scipy。

2018-05-05

scikit_learn-0.19.1-cp36-cp36m-win_amd64.whl

Unofficial Windows Binaries for Python Extension Packages,Scikit-learn integrates classic machine learning algorithms. 下载原地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-image

2018-05-05

MFC71.dll及相关

MFC71.dll与msvcp71.dll同时需要,避免网上只能下载MFC71,再找另一个,一起解决。 解压后,放到system32目录下。

2008-12-22

肖永威的留言板

发表于 2020-01-02 最后回复 2020-01-02

同时编辑两个博客,造成一个丢失问题,能否在草稿箱中帮这找回?

发表于 2016-04-29 最后回复 2016-04-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除