使用Python OpenCV为CNN增加图像样本

我们在做深度学习的过程中,经常面临图片样本不足、不平衡的情况,在本文中,作者结合实际工作经验,通过图像的移动、拼接、缩放、旋转、增加噪声等图像变换技术,能快速、简便的增加样本数量。

2019-06-09 17:52:27

阅读数 38

评论数 0

学习基于Keras框架的ResNet网络及实践笔记

首次使用ResNet和Keras,基于网络上的ResNet50代码实践图片分类,过程中初步了解深度残差网络原理、ResNet50网络模型、Keras框架及相关Tensorflow内容安装,并初步总结训练中学习率和Batch等参数等设置,以及记录部分问题及其处理方法。欢迎读者反馈指点。

2019-06-07 15:33:55

阅读数 76

评论数 0

Python中MongoDB编程与管理实践经验四则(用户管理、索引、查询、导出数据)

Python中MongoDB编程与管理实践经验四则(用户管理、索引、查询、导出数据)

2019-06-06 17:08:37

阅读数 23

评论数 0

如何使用训练好的Tensorflow模型的案例及分析

训练好的Tensorflow模型使用中所遇到问题及总结,加载模型时遇到类似如下错误:“Assign requires shapes of both tensors to match. lhs shape= [3,3,1,16] rhs shape= []...” 出现报错的原因是“移动了不用变量...

2019-05-29 17:15:15

阅读数 87

评论数 0

基于CentOS7安装Python与Tensorflow GPU及科学计算环境实践日志

作为初学人员,从安装CentOS操作系统到测试Tensorflow运行CNN程序,耗费了整整一周时间,996啊!本文记录了中间过程,以及遇到的困难。

2019-04-25 10:18:01

阅读数 86

评论数 0

CentOS7安装NVIDIA显卡(型号:GeForce GTX 1050 Ti)及CUDA笔记

CentOS7安装NVIDIA显卡(型号:GeForce GTX 1050 Ti)笔记,包括过程中CUDA版本不一致,环境配置等坑。

2019-04-25 08:57:33

阅读数 255

评论数 0

无监督学习——聚类(clustering)算法应用初探

我们在实际工作中,使用当前信息化资产——历史生产数据进行大数据人工智能研发工作,通过深度学习,虽然取得很好的结果,不过还有专家对此有疑虑,例如数据准确性问题,物联网采集的数据“异常”情况、人工分类失误为数据打上错误的标签等等,对于这些问题,我引入了聚类算法,用以区分正常数据、不正常数据。 本文通...

2019-04-15 17:29:54

阅读数 166

评论数 0

应用XGboost实现多分类模型实践

本文把XGBoost集成算法模型,应用在工业生产中,分析生产过程数据,提高问题诊断及时率和工作效率。实验学习目标采用XGBoost多分类multi:softprob输出概率,在8000个样本条件下,训练模型,达到62%准确率。本文分享了实验中关键点和填过的坑。

2019-04-04 16:44:45

阅读数 340

评论数 0

TensorFlow CNN卷积神经网络实现工况图分类识别(一)

参照LeNet-5模型,把CNN用在工业生产中,分析生产过程数据,提高问题诊断及时率和工作效率。实验采用TensorFlow人工智能架构,搭建3层卷积和三层全连接神经网络,在4000个样本条件下,训练模型,达到80%准确率。本文分享了实验中关键点和填过的坑。

2019-03-28 21:31:55

阅读数 154

评论数 7

使用Python Matplotlib绘制用于CNN训练图片的方法及实践

用计算机模拟人学习分析图像,首先需要收集待学习的图片,并对图片进行分类管理,对于这些分类需要在计算机文件系统上分别建立目录,把对应分类的图片存储到相应的目录下。 对于训练学习的图片,考虑计算资源及响应速度等要求,要求图片尽可量的小,使用有限的像素表述清楚特征供计算机学习就足够了。 本文重点是完...

2019-03-17 18:24:35

阅读数 161

评论数 0

ValueError: Cannot feed value of shape (100, 160) for Tensor 'Placeholder:0', which has shape '(?,

学习Tensorflow中遇到一个坑,Cannot feed value of shape (100, 160) for Tensor...,分享解决方法:np.reshape()。

2019-03-15 10:39:09

阅读数 2822

评论数 2

如何将mongo查询结果导出到文件中以及导入到另一个Mongo库中

本文发挥Mongo在JavaScript脚本上的优势,编写js代码把查询数据结果导出到文本文件中(JSON格式数据),并使用mongoimport 命令直接导入结果集,同时,也解决了过程中数据的坑。

2019-03-09 23:03:22

阅读数 198

评论数 0

线性回归之梯度下降法求解实践学习笔记(Python)

我通过简单、比较容易理解的一元线性回归为例,入门掌握机器学习、深度学习中基本概念和方法,例如梯度下降、代价函数、学习率等,以及与传统统计学不一样等思维和方法。

2019-02-25 22:55:31

阅读数 210

评论数 1

通过可视化体验人工智能神经网络工具——TensorFlow PlayGround来认识神经网络

对于学习神经网络的初学者,通过可视化体验人工智能神经网络工具——TensorFlow PlayGround来认识神经网络,是比较直观、便捷的。 在这个工具平台上,能任意设计多层神经网络(有限制,但是不影响学习),例如可以通过设计多层、每层多神经元的网络,模拟出过拟合情况;也可以通过调整学习率、激...

2019-02-19 08:36:33

阅读数 240

评论数 0

项目组合、项目集、项目管理实践经验及思考

分析计算机技术与软件专业技术资格(水平)考试——信息系统项目管理师试题,理论结合实践研究项目组合、项目集管理,以及思考如何做的更好。

2019-02-14 14:54:51

阅读数 277

评论数 0

使用Python开发工具Jupyter Notebook学习Tensorflow入门及Tensorboard实践

本文介绍Python开发工具Jupyter Notebook安装及使用入门,学习Tensorflow安装及数据流图入门,并使用Tensorboard实践图形化展示数据流图。

2019-01-17 15:52:17

阅读数 505

评论数 1

Linux(CentOS)系统中安装Mongo DB及配置实践

在Linux(CentOS)系统中安装Mongo DB及配置过程实践记录,包括下载包、安装、数据库目录设置、配置文件配置;以及数据库权限与用户管理,远程连接配置等。

2019-01-08 19:22:01

阅读数 107

评论数 0

Spring boot入门实践Web应用

安装Springsource Tool Suite for Eclipse,创建首个简单Spring boot的Web应用实践。

2019-01-07 22:57:30

阅读数 63

评论数 0

通过Gartner 2018年新兴技术成熟度曲线解读大数据人工智能技术的发展

考虑到调查的稳步增长,很明显人们对人工智能的兴趣在增长。Gartner最近的一项调查显示,59%的组织仍在收集信息来构建其人工智能战略,而其余的组织在人工智能解决方案的试点或采用方面已经取得了进展。

2019-01-04 13:32:14

阅读数 2704

评论数 0

Win10系统环境下VMware虚拟机桥接问题解决一案例

VMware为我们提供了三种网络工作模式,它们分别是:Bridged(桥接模式:VMnet0)、NAT(网络地址转换模式:VMnet8)、Host-Only(仅主机模式:VMnet1)。 VMware桥接模式,也就是将虚拟机的虚拟网络适配器与主机的物理网络适配器进行交接,虚拟机中的虚拟网络适配器可...

2018-12-20 11:39:48

阅读数 646

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭