1. 空间分析与POI
1.1. 什么是POI
POI是“Polnt of Information”的缩写,中文可以翻译为“信息点”。POI是地图上任何非地理意义的有意义的点,如商店、酒吧、加油站、医院、车站等。这些点通常包括名称、类别、经纬度和地址等基本信息。此外,POI数据还可以进一步扩展,包括营业时间、联系电话、人均消费等信息,以满足不同应用场景的需求。
POI数据的应用场景非常广泛,包括但不限于:
- 城市规划和管理:POI数据可以帮助城市规划者了解城市的功能区分布、中心识别和业态集聚等情况,以便更好地制定城市规划和管理的策略。
- 商业选址和营销:商家可以通过POI数据了解目标区域的商业分布和竞争情况,选择合适的店铺位置并进行精准营销,提高市场占有率和营业额。
- 智能交通和导航:POI数据可以帮助导航系统实现更精准的定位和路线规划,为驾驶员提供更加便捷的出行路线和实时交通信息。
- 社交媒体和广告:POI数据可以帮助社交媒体平台了解用户的行为和兴趣,推送更加精准的广告和个性化推荐内容。
- 旅游和文化:POI数据可以帮助旅游和文化部门了解旅游景点的分布和特点,提供更加便捷的旅游信息和宣传推广。
- 公共服务和民生:POI数据可以帮助政府和公共服务机构了解市民的需求和分布情况,提供更加贴心和便捷的民生服务。
总之,POI数据在城市规划和管理、商业选址和营销、智能交通和导航、社交媒体和广告、旅游和文化以及公共服务和民生等领域都具有广泛的应用前景。
1.2. POI的来源
序号 | 分类 | 来源 | 说明 |
---|---|---|---|
1 | 科研机构 | 北大地理数据;科学院地理科学与资源研究所 | geodata.pku.edu.cn,www.resdc.cn |
2 | 地图服务提供商 | 百度,高德,腾讯,谷歌等 | |
3 | 地图软件 | 水经注、BIGEMAP地图、小O地图、ArcGIS | |
4 | 在线地图坐标拾取工具 | 规划云 | www.guihuayun.com |
5 | 社交媒体 | 大众点评、小红书 | 社交媒体平台上有用户自发贡献的POI信息 |
6 | 商业数据提供商 | ||
7 | 政府机构或公共部门 | 城市内的公交站点,交通信号灯 | /www.openstreetmap.org |
需要注意的是,不同来源的POI数据的质量和可靠性可能存在差异,同时不同的应用场景也需要不同类型的POI数据。因此,在选择和使用POI数据时,需要根据具体需求进行评估和筛选。
1.3. POI坐标及标准
当前互联网地图的坐标系主要分为地球坐标 (WGS84)是国际标准,从 GPS 设备中取出的数据的坐标系,国际地图提供商使用的都是这个坐标系。
火星坐标 (GCJ-02)也叫国测局坐标系,中国标准,从国行移动设备中定位获取的坐标数据使用这个坐标系,国家规定:国内出版的各种地图系统(包括电子形式),必须至少采用GCJ-02对地理位,置进行首次加密。Google国内地图(.cn域名下)腾讯搜搜、阿里系高德地图都是这个坐标系。
百度坐标 (BD-09),百度标准,百度 SDK,百度地图,Geocoding 使用(本来就乱了,百度又在火星坐标上来个二次加密)。
综上所述,以上方法获取的POI需要根据来源进行坐标转换至通用的WGS84坐标系下进行处理。
1.4. 空间分析与POI
空间分析与POI(Point of Interest,兴趣点)数据的结合可以帮助我们深入了解地理空间中的特征、趋势和关联性。下面是一些关于空间分析与POI数据的观点:
-
地理空间特征分析: 使用空间分析技术,可以帮助我们理解地理空间中不同区域的特征和分布。通过对POI数据进行空间分析,可以发现不同区域的POI分布模式、密度分布、集聚特征等,从而了解城市的功能分布、交通流量、人口分布等信息。
-
地理空间趋势探测: 通过对历史POI数据的空间分析,可以发现地理空间中的发展趋势和变化。可以观察不同时间段内POI的新增、消失、迁移等情况,分析城市发展的动态变化、商业热点的演变等。
-
空间关联性分析: 空间分析可以帮助我们理解不同POI之间的空间关联性。通过空间自相关分析、热点检测、空间插值等技术,可以发现不同类型POI之间的空间关联关系,例如商业中心和餐饮区域的空间聚集关系、交通枢纽和商业中心的空间联系等。
-
基于空间分析的POI应用: 空间分析为POI数据的应用提供了重要支持。基于空间分析的POI应用包括城市规划、商业选址、交通规划、旅游推荐等。通过空间分析,可以优化POI数据的利用,提高应用的效果和准确性。
-
空间数据可视化与交互: 空间分析与POI数据的结合还可以支持空间数据的可视化与交互。通过地图可视化、空间数据查询、交互式分析等技术,可以直观展示POI数据的空间分布特征,帮助用户理解地理空间中的信息和关联性。
综上所述,空间分析与POI数据的结合可以为我们提供丰富的地理空间信息,帮助我们理解城市的发展特征、商业格局、人口流动等,为城市管理、规划和决策提供重要参考。
1.5. 分析方法案例
核心思想
核心思想是特定类型的POI组合空间聚集在一起可以支持特定的城市功能区。比如在典型的中央商务区,聚集着办公类型的场所,商业服务设施,餐馆,酒店公寓等;而在飞机场附近则更多是酒店和物流集散中心等的共现;大型购物区域是各类衣包鞋和餐饮类POI的聚集共现。
分析方法
例如分析方法是在机器学习和自然语言处理中常用的主题模型(Topic Model),用来在一系列自然语言描述的文档中发现抽象主题的一种统计模型。但是考虑到POI分布和场所特征的独特性,比如一个橄榄球场馆附近有很多餐馆和酒吧,但是球馆只有一个,如果计算词频只是1,但是它却对于这个功能区域的特征贡献很大。本研究并没有直接通过传统的自然语言处理TF-IDF分析,而是同时结合了位置社交媒体(Foursquare)上的签到数据来刻画一个POI的受欢迎程度,在模型训练过程中实现重采样,得到更符合地理场所空间分布特征和使用强度的主题。下图为几个常见功能区所具有的不同类别POI的共现概率分布。
2. 莫兰指数
2.1. 什么是莫兰指数
一般说来,莫兰指数分为全局莫兰指数(GlobalMoran’s I)和安瑟伦局部莫兰指数(AnselinLocal Moran’s I)。其中,莫兰指数是澳大利亚统计学家莫兰(Patrick Alfred PierceMoran)在1950年提出的,安瑟伦局部莫兰指数是美国亚利桑那州立大学地理与规划学院院长Luc Anselin教授在1995年提出的。
莫兰指数(Moran’s I)是一种用于衡量空间自相关性的统计指标,它可以帮助我们理解地理空间数据中是否存在空间集聚或空间分散的现象。莫兰指数的大小和方向可以告诉我们数据的空间分布特征。
莫兰指数(Moran’s I)的计算公式如下:
I = n ∑ i = 1 n ∑ j = 1 n w i j × ∑ i = 1 n ∑ j = 1 n w i j ( x i − x ˉ ) ( x j − x ˉ ) ∑ i = 1 n ( x i −