通过Gartner 2018年新兴技术成熟度曲线解读大数据人工智能技术的发展

1. 写在开始之前

关于Gartner的新兴技术成熟度曲线,Gartner公司是全球知名的IT研究与顾问咨询公司,每年会根据分析预测结果,把各种新科技的发展阶段及要达到成熟所需的时间绘制在一条曲线上,这条曲线被称为“Gartner新兴技术成熟度曲线”(The Gartner Hype Cycle for Emerging Technologies),此曲线有助于市场了解当下热点及未来趋势。一个完整的技术成熟周期包括如下内容:

  • 技术萌芽期(technology trigger)
  • 期望膨胀期(Peak of Inflated Expectations)
  • 泡沫化的谷底期 (Through of Disillusionment)
  • 稳步爬升的光明期 (Slope of Enlightement)
  • 实质生产的高峰期 (Plateau of Productivity)

2. Gartner关注人工智能情况

首先,回顾2017年,Gartner的新兴技术成熟度曲线关注三大新兴技术大趋势:无处不在的人工智能(AI)、透明的沉浸式体验和数字平台。

再看2018年,人工智能(AI)、生物黑客、区块链、生物芯片、5G和增强现实技术构成了2018年Gartner新兴技术成熟度周期17项技术中的6项。这一新兴技术成熟度周期凸显了未来十年将带来高水平竞争力的技术。

2018年报告中所说的“AI民主化”:

在未来10年,AI技术将几乎无处不在。虽然这类高新技术早期随着2016年AlphaGo围棋大战,逐步走入普通大众视野,并解决以前未曾遇到过的问题,但这类技术将为大众所用,即所谓的民主化。云计算、“创客”社区和开源之类的动向和趋势最终将促使AI进入到每个人的手中。

这个趋势得益于下列技术:AI平台即服务(PaaS)、强人工智能、自动驾驶(4级和5级)、自动移动机器人、对话式AI平台、深度神经网络、飞行自动驾驶汽车、智能机器人和虚拟助手。

沃克先生说:“代表民主化AI的技术在成熟度曲线的五个部分中占了三个部分,其中一些技术(比如深度神经网络和虚拟助手)将在今后两到五年内进入到主流采用阶段。这个类别的其他新兴技术(比如智能机器人或AI PaaS)也正在成熟度曲线上迅速逼近顶峰,并很快就会越过顶峰。”

阶段 2018年 2017年
技术萌芽期 AI PaaS、知识图谱、深度神经网络ASIC、自动驾驶L5 深度强化学习、通用人工智能
期望膨胀期 深度学习、智能机器人、智能工作空间、虚拟助手、自动移动机器人 深度学习、智能机器人、机器学习、自动驾驶、虚拟助手
泡沫化的谷底期 自动驾驶L4
稳步爬升的光明期
实质生产的高峰期

2018年新兴技术成熟度曲线

在这里插入图片描述

2017年新兴技术成熟度曲线
在这里插入图片描述

2019年十大战略技术趋势

区块链、量子计算、增强分析和人工智能是未来五年将推动颠覆和新商业模式的10项技术中的四项。这些十大战略技术趋势始终是Gartner文章中最受欢迎的智能化趋势之一。

无论是汽车、机器人还是农业,自主事物都使用人工智能来执行传统上由人类完成的任务。智能的复杂程度各不相同,但所有自主的事物都使用人工智能与环境进行更自然的交互。

随着数据的范围、数量增长,数据科学家需要进行越来越多的数据要准备、分析和分组工作,从中得出结论、探索所有可能性变得更加困难。因此,随着数据科学家使用自动化算法来探索更多假设,增强分析是数据和分析能力的第三大浪潮。数据科学和机器学习平台已经改变了企业如何产生分析洞察力。到2020年,超过40%的数据科学任务将实现自动化——增强分析。

人工智能驱动的开发着眼于工具、技术和最佳实践,将人工智能嵌入到应用程序中,并使用人工智能为开发过程创建人工智能驱动的工具。

市场很快将从关注与开发人员合作的数据科学家,转向使用作为服务提供AI平台和领域应用模型独立运行的开发人员。这将使更多的开发人员能够利用这些服务,并提高效率。这些趋势也导致了虚拟软件开发人员和非专业的“公民应用程序开发人员(citizen application developers)”逐渐成为人工智能使用开发的主流。

在这里插入图片描述

3. 人工智能在工业领域

考虑到调查的稳步增长,很明显人们对人工智能的兴趣在增长。Gartner最近的一项调查显示,59%的组织仍在收集信息来构建其人工智能战略,而其余的组织在人工智能解决方案的试点或采用方面已经取得了进展。

虽然正确地使用人工智能将带来巨大的数字业务回报,但一般人工智能的设想是,人工智能系统神奇地执行人类可以做的任何智能任务,并像人类一样动态地学习,这充其量只是猜测未来。

当下,窄人工智能,包括针对特定任务(如理解语言或在受控环境中驾驶车辆)的高范围机器学习解决方案,以及为该任务优化的算法,是当今研究的方向。“企业应该把重点放在利用窄人工智能技术的应用程序所带来的商业成果上,并将通用人工智能留给研究人员和科幻作家,”Cearley说。

用人工智能技术解决工业中传统数值模拟计算难以突破的领域,用人工智能优化替换数值模拟、传统数理方程,例如采油工程上使用“示功图”进行工况诊断分析,如果使用学习人识别图像方法进行分析是传统思维。其实,“示功图”是为了方便人识图,是人为根据数据造出的图形,这种情况下,对图像识别的意义就有限了。

如果能抛弃传统思维,从原始数据上进行人工智能分析将会有更好的前景。

4. 写在后面的想法

通过Gartner新兴技术成熟度曲线解读大数据人工智能技术的发展,人工智能处在“期望膨胀期”,说到这里,不得不另提CDSN博客中AI科技大本营所译写文章《2018热点总结:BERT最热,GANs最活跃,每20分钟就有一篇论文…》。我们在工作中遇到数据缺失的问题,尝试用随机森林等算法来解决,最后,是GANs为我们解决了数据问题。

数据量大和数据缺失是人工智能工业化路上需要解决的难题,引用书上一句话:“GANs刚提出时没有晦涩的数学推演,描绘的是一幅动感十足的画面,恰好契合了东方哲学中的太极图——万物在相生相克中演化。把GANs想象成一幅太极图,太极生两仪,两仪好比生成器和判别器,生成器负责生,判别器负责灭,一生一灭间有了万物”。

参考:
《5 Trends Emerge in the Gartner Hype Cycle for Emerging Technologies, 2018》 August 16, 2018 Contributor: Kasey Panetta
《Top Trends in the Gartner Hype Cycle for Emerging Technologies, 2017》 August 15, 2017 Contributor: Kasey Panetta
《Gartner Top 10 Strategic Technology Trends for 2019》 October 15, 2018 Contributor: Kasey Panetta

《云计算发展与BPaaS构建企业Private PaaS分析》 CSDN博客 肖永威 2017.04

《Gartner:新兴技术成熟度曲线2018(中文—历年)》 CSDN博客 区小升 2018.09

《2018热点总结:BERT最热,GANs最活跃,每20分钟就有一篇论文…》 CDSN博客 AI科技大本营 2018.12

《百面机器学习》 诸葛越主编 葫芦娃著 中国工信出版集团 人民邮电出版社 2018.08

《油田大数据与创新之路的探究》 CSDN博客 肖永威 2017.01

发布了226 篇原创文章 · 获赞 134 · 访问量 73万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览