弟中弟的Leetcode总结——数组类(十)

Leetcode爬楼梯题的动态规划解法
博客围绕Leetcode的爬楼梯题目展开,题目要求计算爬n阶楼梯的不同方法数。最初尝试回溯法递归提交超时,后采用动态规划,得出除第一、二阶外,上到第n阶台阶的方法数状态转移方程为a[i]=a[i-1]+a[i-2],并给出C语言代码。

弟中弟的Leetcode总结——数组类(十)

题目描述

Climbing Stairs

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.

Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps

Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

思路

开始的时候想的是用回溯法进行递归,但是尝试提交了一次后发现超时了。因此想到了动态规划。
除了第一阶和第二阶楼梯以外,上到第n阶台阶的方法a(n)只有两种可能:从a(n-1)迈一步上去或者从a(n-2)迈两步上去。因此得到了状态转移方程a[i]=a[i-1]+a[i-2],且a[1]=1, a[2]=2.

代码(C)

int climbStairs(int n) {
    int ans[1000];
    ans[1]=1;
    ans[2]=2;
    for(int i=3;i<=n;i++){
        ans[i]=ans[i-1]+ans[i-2];
    }
    return ans[n];
}
内容概要:本文围绕信息融合与状态估计展开,重点介绍基于Kalman滤波和现代时间序列分析方法的状态融合技术,涵盖集中式融合估计、分布式融合估计(包括按矩阵加权、对角阵加权和标量加权)以及协方差交叉融合等多种融合策略,并提供完整的Matlab实现代码。文档还涉及多源数据融合、信号处理、信道估计、谐波去噪、路径规划、电力系统优化等多个相关领域,展示了多种先进算法在实际系统中的建模与仿真应用。; 适合人群:具备一定控制理论、信号处理或自动化背景,熟悉Matlab编程,从事科研或工程应用的研发人员、研究生及高年级本科生; 使用场景及目标:①深入理解多传感器信息融合的基本原理与实现方式;【信息融合与状态估计】基于Kalman滤波和现代时间序列分析方法,利用集中式融合估计、分布式融合估计(按矩阵加权、按对角阵加权、按标量加权)、 协方差交叉融合等方法实现对状态的融合估计(Matlab)②掌握Kalman滤波在状态估计中的核心作用及不同融合结构的性能差异;③通过Matlab代码复现典型论文案例,提升科研仿真能力与算法实现水平; 阅读建议:建议结合文中提供的Matlab代码逐项实践,优先理解Kalman滤波框架与融合准则的数学推导,再拓展至其他应用场景,注意区分集中式与分布式融合的适用条件,强化对不确定性建模与估计一致性的认识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值