SQL 允许我们进行子查询,也就是嵌套在查询中的查询。这样做的好处是可以让我们进行更复杂的查询。因为很多时候,我们无法直接从数据表中得到查询结果,需要从查询结果集中再次进行查询,才能得到想要的结果。这个“查询结果集”就是今天我们要讲的子查询。
什么是关联子查询,什么是非关联子查询
子查询虽然是一种嵌套查询的形式,不过我们依然可以依据子查询是否执行多次,从而将子查询划分为关联子查询和非关联子查询。
子查询从数据表中查询了数据结果,如果这个数据结果只执行一次,然后这个数据结果作为主查询的条件进行执行,那么这样的子查询叫做非关联子查询。
同样,如果子查询需要执行多次,即采用循环的方式,先从外部查询开始,每次都传入子查询进行查询,然后再将结果反馈给外部,这种嵌套的执行方式就称为关联子查询。
假设我们想要知道哪个球员的身高最高,最高身高是多少,就可以采用子查询的方式:
SELECT player_name, height FROM player WHERE height = (SELECT max(height) FROM player)
你能看到,通过SELECT max(height) FROM player可以得到最高身高这个数值,结果为 2.16,然后我们再通过 player 这个表,看谁具有这个身高,再进行输出,这样的子查询就是非关联子查询。
如果子查询的执行依赖于外部查询,通常情况下都是因为子查询中的表用到了外部的表,并进行了条件关联,因此每执行一次外部查询,子查询都要重新计算一次,这样的子查询就称之为关联子查询。比如我们想要查找每个球队中大于平均身高的球员有哪些,并显示他们的球员姓名、身高以及所在球队 ID。
SELECT player_name, height, team_id FROM player AS a WHERE height > (SELECT avg(height) FROM player AS b WHERE a.team_id = b.team_id)
EXISTS 子查询
关联子查询通常也会和 EXISTS 一起来使用,EXISTS 子查询用来判断条件是否满足,满足的话为 True,不满足为 False。
比如我们想要看出场过的球员都有哪些,并且显示他们的姓名、球员 ID 和球队 ID。在这个统计中,是否出场是通过 player_score 这张表中的球员出场表现来统计的,如果某个球员在 player_score 中有出场记录则代表他出场过,这里就使用到了 EXISTS 子查询,即EXISTS (SELECT player_id FROM player_score WHERE player.player_id = player_score.player_id),然后将它作为筛选的条件,实际上也是关联子查询,即:
SELECT player_id, team_id, player_name FROM player WHERE EXISTS (SELECT player_id FROM player_score WHERE player.player_id = player_score.player_id)
同样,NOT EXISTS 就是不存在的意思,我们也可以通过 NOT EXISTS 查询不存在于 player_score 表中的球员信息,比如主表中的 player_id 不在子表 player_score 中,判断语句为NOT EXISTS (SELECT player_id FROM player_score WHERE player.player_id = player_score.player_id)。整体的 SQL 语句为:
SELECT player_id, team_id, player_name FROM player WHERE NOT EXISTS (SELECT player_id FROM player_score WHERE player.player_id = player_score.player_id)
集合比较子查询
集合比较子查询的作用是与另一个查询结果集进行比较,我们可以在子查询中使用 IN、ANY、ALL 和 SOME 操作符,它们的含义和英文意义一样:
SELECT player_id, team_id, player_name FROM player WHERE player_id in (SELECT player_id FROM player_score WHERE player.player_id = player_score.player_id)
你会发现运行结果和上面的是一样的,那么问题来了,既然 IN 和 EXISTS 都可以得到相同的结果,那么我们该使用 IN 还是 EXISTS 呢?
SELECT * FROM A WHERE cc IN (SELECT cc FROM B)
SELECT * FROM A WHERE EXIST (SELECT cc FROM B WHERE B.cc=A.cc)
实际上在查询过程中,在我们对 cc 列建立索引的情况下,我们还需要判断表 A 和表 B 的大小。在这里例子当中,表 A 指的是 player 表,表 B 指的是 player_score 表。如果表 A 比表 B 大,那么 IN 子查询的效率要比 EXIST 子查询效率高,因为这时 B 表中如果对 cc 列进行了索引,那么 IN 子查询的效率就会比较高。
同样,如果表 A 比表 B 小,那么使用 EXISTS 子查询效率会更高,因为我们可以使用到 A 表中对 cc 列的索引,而不用从 B 中进行 cc 列的查询。
了解了 IN 查询后,我们来看下 ANY 和 ALL 子查询。刚才讲到了 ANY 和 ALL 都需要使用比较符,比较符包括了(>)(=)(<)(>=)(<=)和(<>)等。
如果我们想要查询球员表中,比印第安纳步行者(对应的 team_id 为 1002)中任何一个球员身高高的球员的信息,并且输出他们的球员 ID、球员姓名和球员身高,该怎么写呢?首先我们需要找出所有印第安纳步行者队中的球员身高,即SELECT height FROM player WHERE team_id = 1002,然后使用 ANY 子查询即:
SELECT player_id, player_name, height FROM player WHERE height > ANY (SELECT height FROM player WHERE team_id = 1002)
同样,如果我们想要知道比印第安纳步行者(对应的 team_id 为 1002)中所有球员身高都高的球员的信息,并且输出球员 ID、球员姓名和球员身高,该怎么写呢?
SELECT player_id, player_name, height FROM player WHERE height > ALL (SELECT height FROM player WHERE team_id = 1002)
将子查询作为计算字段
实际上子查询也可以作为主查询的计算字段。比如我想查询每个球队的球员数,也就是对应 team 这张表,我需要查询相同的 team_id 在 player 这张表中所有的球员数量是多少。
SELECT team_name, (SELECT count(*) FROM player WHERE player.team_id = team.team_id) AS player_num FROM team
你能看到,在 player 表中只有底特律活塞和印第安纳步行者的球员数据,所以它们的 player_num 不为 0,而亚特兰大老鹰的 player_num 等于 0。在查询的时候,我将子查询SELECT count(*) FROM player WHERE player.team_id = team.team_id作为了计算字段,通常我们需要给这个计算字段起一个别名,这里我用的是 player_num,因为子查询的语句比较长,使用别名更容易理解。
总结
今天学习子查询的使用,按照子查询执行的次数,我们可以将子查询分成关联子查询和非关联子查询,其中非关联子查询与主查询的执行无关,只需要执行一次即可,而关联子查询,则需要将主查询的字段值传入子查询中进行关联查询。
同时,在子查询中你可能会使用到 EXISTS、IN、ANY、ALL 和 SOME 等关键字。在某些情况下使用 EXISTS 和 IN 可以得到相同的效果,具体使用哪个执行效率更高,则需要看字段的索引情况以及表 A 和表 B 哪个表更大。同样,IN、ANY、ALL、SOME 这些关键字是用于集合比较的,SOME 是 ANY 的别名,当我们使用 ANY 或 ALL 的时候,一定要使用比较操作符。
最后,学习如何使用子查询作为计算字段,把子查询的结果作为主查询的列。
exists和in的区别:
其实和选择哪个还是要看表的大小。选择的标准,你可以理解为: 小表驱动大表。这种方式下效率是最高的。比如
SELECT * FROM A WHERE cc IN (SELECT cc FROM B)
SELECT * FROM A WHERE EXIST (SELECT cc FROM B WHERE B.cc=A.cc)
当A小于B时,用EXIST。因为EXIST的实现,相当于外表循环,实现的逻辑类似于:
for i in A
for j in B
if j.cc == i.cc then ...
当B小于A时,用IN,因为实现的逻辑类似于:
for i in B
for j in A
if j.cc == i.cc then ...
所以哪个表小就用哪个表来驱动,A表小 就用EXIST,B表小 就用IN
IN表是外边和内表进行hash连接,是先执行子查询。
EXISTS是对外表进行循环,然后在内表进行查询。
因此如果外表数据量大,则用IN,如果外表数据量小,用EXISTS。
IN有一个缺陷是不能判断NULL,因此如果字段存在NULL值,则会出现返回,因此最好使用NOT EXISTS。
SELECT * FROM A WHERE cc IN (SELECT cc FROM B)
SELECT * FROM A WHERE EXIST (SELECT cc FROM B WHERE B.cc=A.cc)
A 表有 n 条数据,B 表有 m 条数据
两条语句的执行效率(假设都用 btree 索引)
用 in :m * log (n)
用 exists: n * log (m)
所以小表驱动大表能够大幅度提高执行速度