补充稀疏编码前篇-Sparse coding

补充稀疏编码前篇-Sparse coding

稀疏编码前篇-Sparse coding
这里是对这篇文章做几个关键点的补充。
1、稀疏表示的方法提取特征,其实现包括两个过程,一是基向量的学习过程,也称为字典学习过程,在这个过程中,我们利用大量训练样本,通过无监督的学习方法获得一组冗余的基向量并采用k-svd算法进行对字典更新;二是线性拟合(稀疏系数)的求解过程,这一步,根据约束条件的不同,所得的结果是不同的,这个过程利用OMP算法对稀疏系数进行更新。
2、正交匹配追踪(OMP)算法:
1)输入:字典D,信号y,目标稀疏度T或者目标误差e
2)输出:稀疏表示系数x 能使得y ≈ Dx
3)初始化:令残差向量 r等于信号y,x=0
4)计算dTx的内积,从字典中找到与e的内积绝对值最大的原子,表示为φ
5)通过从e减去其在φ中所张成空间上的正交投影得到残差e1
6)对残差迭代执行4/5步
7)直到达到指定的结束规则值后停止迭代。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值