/*
a positive integer number is beautiful if and only if it is divisible by each of its nonzero digits.
问一个区间内[l,r]有多少个Beautiful数字
范围9*10^18
数位统计问题,构造状态也挺难的,我想不出,我的思维局限在用递推去初始化状态,而这里的状态定义也比较难
跟pre的具体数字有关
问了NotOnlySuccess的,豁然开朗 Orz
一个数字要被它的所有非零位整除,即被他们的LCM整除,可以存已有数字的Mask,但更好的方法是存它们的LCM{digit[i]}
int MOD = LCM{1,2,9} = 5 * 7 * 8 * 9 = 2520
按照定义,数字x为Beautiful :
x % LCM{digit[xi]} = 0
即 x % MOD % LCM{digit[xi]} = 0
所以可以只需存x % MOD,范围缩小了
而在逐位统计时,假设到了pre***(pre指前面的一段已知的数字,而*是任意变)
( preSum * 10^pos + next ) % MOD % LCM(preLcm , nextLcm)
= ( preSum * 10 ^ pos % MOD + next % MOD ) % LCM(preLcm , nextLcm)
== 0
而next,nextLcm是变量,上面的比较式的意义就是
在已知pos , preSum , preLcm情况下有多少种(next,nextLcm)满足式子为0
而这个就是一个重复子问题所在的地方了,需要记录下来,用记忆化搜索
dfs(pos , preSum , preLcm , doing)
加一个标记为doing表示目前是在计算给定数字的上限,还是没有上限,即***类型的
这样就将初始化以及逐位统计写在一个dfs了,好神奇!!!
还有一点,10以内的数字情况为2^3 , 3^2 , 5 , 7
所以最小公倍数组合的情况只有4*3*2*2 = 48
可以存起来,我看NotOnlySuccess的写法是
for(int i = 1 ; i <= MOD ; i ++)
{
if(MOD % i == 0)
index[i] = num++;
}
很棒!!
所以复杂度大概为19*2520*48*10(状态数*决策数)
我觉得这题状态的设计不能跟具体数字分开,否则会很难设计吧
所以用记忆化搜索,存起来
用具体数字去计算,重复的子问题跟pre关系比较密切
有一个比较重要的切入点就是LCM,还有%MOD缩小范围,才能存储
还有优化到只需%252的,更快
不过我觉得%2520比较好理解
*/
#include<iostream>
#include<cstring>
#include<map>
#include<algorithm>
#include<stack>
#include<queue>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<vector>
#include<cstdio>
using namespace std;
const int MOD = 2520;
__int64 dp[19][MOD][48];
int index[MOD+10];
int digit[19];
int gcd(int a , int b)
{
return b == 0 ? a : gcd(b , a % b);
}
int lcm(int a, int b)
{
return a / gcd(a,b) * b;
}
void init()
{
//编号
int num = 0;
for(int i = 1 ; i <= MOD ; i ++)
{
if(MOD % i == 0)
index[i] = num ++;
}
memset(dp,-1,sizeof(dp));
}
__int64 dfs(int pos , int preSum , int preLcm , bool doing)
{
if(pos == -1)//为一个数字时
return preSum % preLcm == 0;
if(!doing && dp[pos][preSum][index[preLcm]] != -1)
return dp[pos][preSum][index[preLcm]];
__int64 ans = 0;
int end = doing ? digit[pos] : 9;
for(int i = 0 ; i <= end ; i++)//上界
{
int nowSum = (preSum * 10 + i ) % MOD;
int nowLcm = preLcm;
if(i)
{
nowLcm = lcm(nowLcm , i);
}
ans += dfs(pos - 1 , nowSum , nowLcm , doing && i == end);//doing && i == end
}
if(!doing)
{
dp[pos][preSum][index[preLcm]] = ans;
}
return ans;
}
__int64 cal(__int64 x)
{
int pos = 0;
while(x)
{
digit[pos++] = x % 10;
x /= 10;
}
return dfs(pos - 1 , 0 , 1 , 1);
}
int main()
{
init();
int T;
for(scanf("%d",&T) ; T -- ; )
{
__int64 left , right ;
cin >> left >> right;
cout << cal(right) - cal(left - 1) << endl;
}
return 0;
}
Orz!!!!
CodeForces 55D 数位统计 记忆化搜索
最新推荐文章于 2019-10-01 23:13:11 发布