城市级百度指数搜索日月年源数据+城市间矩阵(2011-2023年)

百度指数是百度公司推出的一项基于海量网民行为数据的数据分享平台,它利用百度搜索引擎的海量数据,通过科学的数据分析模型,计算并分析关键词在百度网页搜索中搜索频次的加权和,以反映不同关键词在过去一段时间里的“用户关注度”和“媒体关注度”。百度指数可以展示关键词的搜索趋势、需求图谱、资讯指数、人群画像等,为企业的市场趋势分析、品牌监测、产品研究等提供有力的数据支持。

最近我们将2011-2023年所有城市的城市间搜索指数爬取完成,并整理为矩阵形式,耗时多日。整个数据集大小2个多G,源数据样本量达数十亿条,并整理为分年矩阵形式。

一、数据名称:

城市级百度指数搜索日月年源数据+城市间矩阵

二、范围:

2011-2023年(包括日度源数据、月度汇总、年度汇总、年度矩阵)

百度指数收录的全国365个城市

三、数据来源:

百度指数

四、详情及部分截图:

1、城市VS城市矩阵

2、日度源数据

### mmengine 表格字段含义解释 #### 字段 `class` 的含义 `class` 列表示检测任务中的类别名称或索引。它用于区分不同的目标分类,例如在 COCO 数据集中可能有 “person”,“car”,“dog” 等类别的标签[^1]。 #### 字段 `gts` 的含义 `gts` 是 ground truth(真实标注框)的缩写。该列表示每种类别下的实际目标数量,即数据集中手动标记的真实边界框的数量。 #### 字段 `dets` 的含义 `dets` 是 detections(预测框)的缩写。此列表示模型对于某一特定类别所生成的预测框总数。这些预测框是由模型输出并经过非极大值抑制 (NMS) 处理后的结果。 #### 字段 `recall` 的含义 `recall` 即召回率,定义为被正确识别的目标数占总目标数的比例。计算公式如下: \[ \text{Recall} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}} \] 其中 True Positives 是成功匹配到真实框的预测框数目;False Negatives 是未被任何预测框覆盖的真实框数目。 #### 字段 `ap` 的含义 `ap` 是 Average Precision(平均精度)的缩写。它是衡量模型性能的重要指标之一,在 PR 曲线(Precision-Recall Curve)下面积的数值。具体来说,AP 被用来综合评价不同阈值条件下的精确度和召回率表现。 #### 字段 `mAP` 的含义 `mAP` 是 mean Average Precision(均值平均精度)的缩写。这是通过取所有类别 AP 值的算术平均值得到的整体评估标准。通常情况下,mAP 可作为整个物体检测系统的最终评分依据。 ```python import numpy as np def calculate_mAP(ap_values): """ 计算 mAP 给定各个类别的 AP 数组 参数: ap_values (list or array): 各个类别的 AP 值数组 返回: float: 平均精度均值(mAP) """ return np.mean(ap_values) # 示例输入 aps = [0.78, 0.92, 0.85, 0.67] print(f"Mean Average Precision is {calculate_mAP(aps)}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值